在表面上具不紧密的叶的叶

Q3 Mathematics
S. Maksymenko, E. Polulyakh
{"title":"在表面上具不紧密的叶的叶","authors":"S. Maksymenko, E. Polulyakh","doi":"10.15673/tmgc.v8i3-4.1603","DOIUrl":null,"url":null,"abstract":"The paper studies non-compact surfaces obtained by gluing strips R × (−1, 1) with at most countably many boundary intervals along some of these intervals. Every such strip possesses a foliation by parallel lines, which gives a foliation on the resulting surface. It is proved that the identity path component of the group of homeomorphisms of that foliation is contractible.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Foliations with non-compact leaves on surfaces\",\"authors\":\"S. Maksymenko, E. Polulyakh\",\"doi\":\"10.15673/tmgc.v8i3-4.1603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies non-compact surfaces obtained by gluing strips R × (−1, 1) with at most countably many boundary intervals along some of these intervals. Every such strip possesses a foliation by parallel lines, which gives a foliation on the resulting surface. It is proved that the identity path component of the group of homeomorphisms of that foliation is contractible.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v8i3-4.1603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v8i3-4.1603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了用胶合条rx(−1,1)得到的非紧曲面,在其中的一些区间上有至多可数个边界区间。每一个这样的条带都有平行线的叶理,这就在得到的表面上形成了一个叶理。证明了该叶的同胚群的恒等路径分量是可缩的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foliations with non-compact leaves on surfaces
The paper studies non-compact surfaces obtained by gluing strips R × (−1, 1) with at most countably many boundary intervals along some of these intervals. Every such strip possesses a foliation by parallel lines, which gives a foliation on the resulting surface. It is proved that the identity path component of the group of homeomorphisms of that foliation is contractible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信