{"title":"自主航空机械臂协调交接的反应性规划","authors":"Jérôme Truc, D. Sidobre, R. Alami","doi":"10.1145/3568294.3580055","DOIUrl":null,"url":null,"abstract":"In this paper, we present a coordinated and reactive human-aware motion planner for performing a handover task by an autonomous aerial manipulator (AAM). We present a method to determine the final state of the AAM for a handover task based on the current state of the human and the surrounding obstacles. We consider the visual field of the human and the effort to turn the head and see the AAM as well as the discomfort caused to the human. We apply these social constraints together with the kinematic constraints of the AAM to determine its coordinated motion along the trajectory.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"68 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Planning for Coordinated Handover of an Autonomous Aerial Manipulator\",\"authors\":\"Jérôme Truc, D. Sidobre, R. Alami\",\"doi\":\"10.1145/3568294.3580055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a coordinated and reactive human-aware motion planner for performing a handover task by an autonomous aerial manipulator (AAM). We present a method to determine the final state of the AAM for a handover task based on the current state of the human and the surrounding obstacles. We consider the visual field of the human and the effort to turn the head and see the AAM as well as the discomfort caused to the human. We apply these social constraints together with the kinematic constraints of the AAM to determine its coordinated motion along the trajectory.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568294.3580055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568294.3580055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Reactive Planning for Coordinated Handover of an Autonomous Aerial Manipulator
In this paper, we present a coordinated and reactive human-aware motion planner for performing a handover task by an autonomous aerial manipulator (AAM). We present a method to determine the final state of the AAM for a handover task based on the current state of the human and the surrounding obstacles. We consider the visual field of the human and the effort to turn the head and see the AAM as well as the discomfort caused to the human. We apply these social constraints together with the kinematic constraints of the AAM to determine its coordinated motion along the trajectory.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.