{"title":"基于不确定性量化的学术推荐人绩效改进研究","authors":"Jiehan Zhu, L. L. Novelo, A. Yaseen","doi":"10.3390/knowledge3030020","DOIUrl":null,"url":null,"abstract":"Deep learning is widely used in many real-life applications. Despite their remarkable performance accuracies, deep learning networks are often poorly calibrated, which could be harmful in risk-sensitive scenarios. Uncertainty quantification offers a way to evaluate the reliability and trustworthiness of deep-learning-based model predictions. In this work, we introduced uncertainty quantification to our virtual research assistant recommender platform through both Monte Carlo dropout ensemble techniques. We also proposed a new formula to incorporate the uncertainty estimates into our recommendation models. The experiments were carried out on two different components of the recommender platform (i.e., a BERT-based grant recommender and a temporal graph network (TGN)-based collaborator recommender) using real-life datasets. The recommendation results were compared in terms of both recommender metrics (AUC, AP, etc.) and the calibration/reliability metric (ECE). With uncertainty quantification, we were able to better understand the behavior of our regular recommender outputs; while our BERT-based grant recommender tends to be overconfident with its outputs, our TGN-based collaborator recommender tends to be underconfident in producing matching probabilities. Initial case studies also showed that our proposed model with uncertainty quantification adjustment from ensemble gave the best-calibrated results together with the desirable recommender performance.","PeriodicalId":74770,"journal":{"name":"Science of aging knowledge environment : SAGE KE","volume":"1964 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Uncertainty Quantification for the Performance Improvement of Academic Recommenders\",\"authors\":\"Jiehan Zhu, L. L. Novelo, A. Yaseen\",\"doi\":\"10.3390/knowledge3030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is widely used in many real-life applications. Despite their remarkable performance accuracies, deep learning networks are often poorly calibrated, which could be harmful in risk-sensitive scenarios. Uncertainty quantification offers a way to evaluate the reliability and trustworthiness of deep-learning-based model predictions. In this work, we introduced uncertainty quantification to our virtual research assistant recommender platform through both Monte Carlo dropout ensemble techniques. We also proposed a new formula to incorporate the uncertainty estimates into our recommendation models. The experiments were carried out on two different components of the recommender platform (i.e., a BERT-based grant recommender and a temporal graph network (TGN)-based collaborator recommender) using real-life datasets. The recommendation results were compared in terms of both recommender metrics (AUC, AP, etc.) and the calibration/reliability metric (ECE). With uncertainty quantification, we were able to better understand the behavior of our regular recommender outputs; while our BERT-based grant recommender tends to be overconfident with its outputs, our TGN-based collaborator recommender tends to be underconfident in producing matching probabilities. Initial case studies also showed that our proposed model with uncertainty quantification adjustment from ensemble gave the best-calibrated results together with the desirable recommender performance.\",\"PeriodicalId\":74770,\"journal\":{\"name\":\"Science of aging knowledge environment : SAGE KE\",\"volume\":\"1964 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of aging knowledge environment : SAGE KE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/knowledge3030020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of aging knowledge environment : SAGE KE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/knowledge3030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incorporating Uncertainty Quantification for the Performance Improvement of Academic Recommenders
Deep learning is widely used in many real-life applications. Despite their remarkable performance accuracies, deep learning networks are often poorly calibrated, which could be harmful in risk-sensitive scenarios. Uncertainty quantification offers a way to evaluate the reliability and trustworthiness of deep-learning-based model predictions. In this work, we introduced uncertainty quantification to our virtual research assistant recommender platform through both Monte Carlo dropout ensemble techniques. We also proposed a new formula to incorporate the uncertainty estimates into our recommendation models. The experiments were carried out on two different components of the recommender platform (i.e., a BERT-based grant recommender and a temporal graph network (TGN)-based collaborator recommender) using real-life datasets. The recommendation results were compared in terms of both recommender metrics (AUC, AP, etc.) and the calibration/reliability metric (ECE). With uncertainty quantification, we were able to better understand the behavior of our regular recommender outputs; while our BERT-based grant recommender tends to be overconfident with its outputs, our TGN-based collaborator recommender tends to be underconfident in producing matching probabilities. Initial case studies also showed that our proposed model with uncertainty quantification adjustment from ensemble gave the best-calibrated results together with the desirable recommender performance.