超短皮肤电活动信号自动疼痛评估

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xinwei Ji, Tianming Zhao, Wei Li, Albert Y. Zomaya
{"title":"超短皮肤电活动信号自动疼痛评估","authors":"Xinwei Ji, Tianming Zhao, Wei Li, Albert Y. Zomaya","doi":"10.1145/3555776.3577721","DOIUrl":null,"url":null,"abstract":"Automatic pain assessment systems can help patients get timely and effective pain relief treatment whenever needed. Such a system aims to provide the service with pain identification and pain intensity rating functions. Among the physiological signals, the electrodermal activity (EDA) signal emerges as a promising feature to support both functions in pain assessment. In this work, we propose a machine learning framework to implement pain identification and pain intensity rating using only EDA and its derived features. Our solution also explores the feasibility of using ultra-short EDA segmentation of about 5 seconds to meet real-time requirements. We evaluate our system on two datasets: Biovid, a publicly available dataset, and Apon, the one we build. Experimental results demonstrate that using just the ultra-short EDA signal as input, our algorithm outperforms state-of-the-art baselines and achieves a low regression error of 0.90.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"103 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Pain Assessment with Ultra-short Electrodermal Activity Signal\",\"authors\":\"Xinwei Ji, Tianming Zhao, Wei Li, Albert Y. Zomaya\",\"doi\":\"10.1145/3555776.3577721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic pain assessment systems can help patients get timely and effective pain relief treatment whenever needed. Such a system aims to provide the service with pain identification and pain intensity rating functions. Among the physiological signals, the electrodermal activity (EDA) signal emerges as a promising feature to support both functions in pain assessment. In this work, we propose a machine learning framework to implement pain identification and pain intensity rating using only EDA and its derived features. Our solution also explores the feasibility of using ultra-short EDA segmentation of about 5 seconds to meet real-time requirements. We evaluate our system on two datasets: Biovid, a publicly available dataset, and Apon, the one we build. Experimental results demonstrate that using just the ultra-short EDA signal as input, our algorithm outperforms state-of-the-art baselines and achieves a low regression error of 0.90.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自动疼痛评估系统可以帮助患者在需要时得到及时有效的疼痛缓解治疗。该系统旨在为该服务提供疼痛识别和疼痛强度评级功能。在生理信号中,皮电活动(EDA)信号作为一种有前景的特征在疼痛评估中支持这两种功能。在这项工作中,我们提出了一个机器学习框架,仅使用EDA及其衍生特征来实现疼痛识别和疼痛强度评级。我们的解决方案还探索了使用5秒左右的超短EDA分割来满足实时需求的可行性。我们在两个数据集上评估我们的系统:Biovid(一个公开可用的数据集)和Apon(我们构建的数据集)。实验结果表明,仅使用超短EDA信号作为输入,我们的算法优于最先进的基线,并实现了0.90的低回归误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Pain Assessment with Ultra-short Electrodermal Activity Signal
Automatic pain assessment systems can help patients get timely and effective pain relief treatment whenever needed. Such a system aims to provide the service with pain identification and pain intensity rating functions. Among the physiological signals, the electrodermal activity (EDA) signal emerges as a promising feature to support both functions in pain assessment. In this work, we propose a machine learning framework to implement pain identification and pain intensity rating using only EDA and its derived features. Our solution also explores the feasibility of using ultra-short EDA segmentation of about 5 seconds to meet real-time requirements. We evaluate our system on two datasets: Biovid, a publicly available dataset, and Apon, the one we build. Experimental results demonstrate that using just the ultra-short EDA signal as input, our algorithm outperforms state-of-the-art baselines and achieves a low regression error of 0.90.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信