新型自然语言处理模型和人工智能能否从脊柱外科手术记录中自动生成账单代码?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-09-01 Epub Date: 2023-03-18 DOI:10.1177/21925682231164935
Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim
{"title":"新型自然语言处理模型和人工智能能否从脊柱外科手术记录中自动生成账单代码?","authors":"Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim","doi":"10.1177/21925682231164935","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>Retrospective cohort.</p><p><strong>Objective: </strong>Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.</p><p><strong>Methods: </strong>We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.</p><p><strong>Results: </strong>The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).</p><p><strong>Conclusions: </strong>We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can a Novel Natural Language Processing Model and Artificial Intelligence Automatically Generate Billing Codes From Spine Surgical Operative Notes?\",\"authors\":\"Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim\",\"doi\":\"10.1177/21925682231164935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study design: </strong>Retrospective cohort.</p><p><strong>Objective: </strong>Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.</p><p><strong>Methods: </strong>We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.</p><p><strong>Results: </strong>The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).</p><p><strong>Conclusions: </strong>We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21925682231164935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682231164935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

研究设计回顾性队列:在美国,账单和编码相关的管理工作是医疗支出的主要来源。我们的目的是证明一种二次迭代自然语言处理(NLP)机器学习算法 XLNet 可以根据 ACDF、PCDF 和 CDA 手术的手术记录自动生成 CPT 代码:我们收集了 2015 年至 2020 年期间接受 ACDF、PCDF 或 CDA 手术患者的 922 份手术记录,其中包括计费代码部门生成的 CPT 代码。我们在该数据集上训练了广义自回归预训练方法 XLNet,并通过计算 AUROC 和 AUPRC 测试了其性能:结果:模型的性能接近人类准确度。试验 1(ACDF)的 AUROC 为 .82(范围:.48-.93),AUPRC 为 .81(范围:.45-.97),逐类准确率为 77%(范围:34%-91%);试验 2(PCDF)的 AUROC 为 .83(.44-.94),AUPRC 为 0.70(.45-.96),逐类准确率为 71%(42%-93%);试验 3(ACDF 和 CDA)的 AUROC 为 .95(.68-.99),AUPRC 为 0.91(.56-.98),逐类准确率为 87%(63%-99%);试验 4(ACDF、PCDF、CDA)的 AUROC 为 0.95(.76-.99),AUPRC 为 0.84(.49-.99),逐类准确率为 88%(70%-99%):我们的研究表明,XLNet 模型可成功应用于骨科医生的手术笔记,以生成 CPT 账单代码。随着 NLP 模型整体的不断改进,人工智能辅助生成 CPT 账单代码可以大大提高账单处理能力,这将有助于最大限度地减少错误并促进流程的标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can a Novel Natural Language Processing Model and Artificial Intelligence Automatically Generate Billing Codes From Spine Surgical Operative Notes?

Study design: Retrospective cohort.

Objective: Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.

Methods: We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.

Results: The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).

Conclusions: We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信