Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim
{"title":"新型自然语言处理模型和人工智能能否从脊柱外科手术记录中自动生成账单代码?","authors":"Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim","doi":"10.1177/21925682231164935","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>Retrospective cohort.</p><p><strong>Objective: </strong>Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.</p><p><strong>Methods: </strong>We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.</p><p><strong>Results: </strong>The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).</p><p><strong>Conclusions: </strong>We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can a Novel Natural Language Processing Model and Artificial Intelligence Automatically Generate Billing Codes From Spine Surgical Operative Notes?\",\"authors\":\"Bashar Zaidat, Justin Tang, Varun Arvind, Eric A Geng, Brian Cho, Akiro H Duey, Calista Dominy, Kiehyun D Riew, Samuel K Cho, Jun S Kim\",\"doi\":\"10.1177/21925682231164935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study design: </strong>Retrospective cohort.</p><p><strong>Objective: </strong>Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.</p><p><strong>Methods: </strong>We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.</p><p><strong>Results: </strong>The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).</p><p><strong>Conclusions: </strong>We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21925682231164935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682231164935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Can a Novel Natural Language Processing Model and Artificial Intelligence Automatically Generate Billing Codes From Spine Surgical Operative Notes?
Study design: Retrospective cohort.
Objective: Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.
Methods: We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.
Results: The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).
Conclusions: We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.