带表面张力的两相不可压缩Navier-Stokes方程弱解的压力重建

Asymptot. Anal. Pub Date : 2018-01-15 DOI:10.3233/ASY-181507
H. Abels, J. Daube, C. Kraus
{"title":"带表面张力的两相不可压缩Navier-Stokes方程弱解的压力重建","authors":"H. Abels, J. Daube, C. Kraus","doi":"10.3233/ASY-181507","DOIUrl":null,"url":null,"abstract":"For the two-phase incompressible Navier--Stokes equations with surface tension, we derive an appropriate weak formulation incorporating a variational formulation using divergence-free test functions. We prove a consistency result to justify our definition and, under reasonable regularity assumptions, we reconstruct the pressure function from the weak formulation.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"47 1","pages":"51-86"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pressure reconstruction for weak solutions of the two-phase incompressible Navier-Stokes equations with surface tension\",\"authors\":\"H. Abels, J. Daube, C. Kraus\",\"doi\":\"10.3233/ASY-181507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the two-phase incompressible Navier--Stokes equations with surface tension, we derive an appropriate weak formulation incorporating a variational formulation using divergence-free test functions. We prove a consistency result to justify our definition and, under reasonable regularity assumptions, we reconstruct the pressure function from the weak formulation.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"47 1\",\"pages\":\"51-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于具有表面张力的两相不可压缩Navier—Stokes方程,我们使用无散度测试函数导出了包含变分公式的适当弱公式。我们证明了一个一致性结果来证明我们的定义,并在合理的正则性假设下,从弱公式重构了压力函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure reconstruction for weak solutions of the two-phase incompressible Navier-Stokes equations with surface tension
For the two-phase incompressible Navier--Stokes equations with surface tension, we derive an appropriate weak formulation incorporating a variational formulation using divergence-free test functions. We prove a consistency result to justify our definition and, under reasonable regularity assumptions, we reconstruct the pressure function from the weak formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信