随机环境下具有迁移的强超临界分支过程的极限定理

Q3 Mathematics
V. Afanasyev
{"title":"随机环境下具有迁移的强超临界分支过程的极限定理","authors":"V. Afanasyev","doi":"10.1515/eqc-2021-0036","DOIUrl":null,"url":null,"abstract":"Abstract We consider a strongly supercritical branching process in random environment with immigration stopped at a distant time 𝑛. The offspring reproduction law in each generation is assumed to be geometric. The process is considered under the condition of its extinction after time 𝑛. Two limit theorems for this process are proved: the first one is for the time interval from 0 till 𝑛, and the second one is for the time interval from 𝑛 till + ∞ +\\infty .","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"163 1","pages":"129 - 143"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit Theorems for a Strongly Supercritical Branching Process with Immigration in Random Environment\",\"authors\":\"V. Afanasyev\",\"doi\":\"10.1515/eqc-2021-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a strongly supercritical branching process in random environment with immigration stopped at a distant time 𝑛. The offspring reproduction law in each generation is assumed to be geometric. The process is considered under the condition of its extinction after time 𝑛. Two limit theorems for this process are proved: the first one is for the time interval from 0 till 𝑛, and the second one is for the time interval from 𝑛 till + ∞ +\\\\infty .\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"163 1\",\"pages\":\"129 - 143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑一个随机环境下的强超临界分支过程,迁移过程在很远的时间𝑛停止。假定每一代后代的繁殖规律是几何的。该过程是在时间𝑛后其消失的条件下考虑的。证明了该过程的两个极限定理:第一个定理适用于从0到𝑛的时间区间,第二个定理适用于𝑛到+∞+ \infty的时间区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit Theorems for a Strongly Supercritical Branching Process with Immigration in Random Environment
Abstract We consider a strongly supercritical branching process in random environment with immigration stopped at a distant time 𝑛. The offspring reproduction law in each generation is assumed to be geometric. The process is considered under the condition of its extinction after time 𝑛. Two limit theorems for this process are proved: the first one is for the time interval from 0 till 𝑛, and the second one is for the time interval from 𝑛 till + ∞ +\infty .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信