图p-拉普拉斯算子的同调特征值

IF 0.5 3区 数学 Q3 MATHEMATICS
Dong Zhang
{"title":"图p-拉普拉斯算子的同调特征值","authors":"Dong Zhang","doi":"10.1142/s1793525323500346","DOIUrl":null,"url":null,"abstract":"Inspired by persistent homology in topological data analysis, we introduce the homological eigenvalues of the graph $p$-Laplacian $\\Delta_p$, which allows us to analyse and classify non-variational eigenvalues. We show the stability of homological eigenvalues, and we prove that for any homological eigenvalue $\\lambda(\\Delta_p)$, the function $p\\mapsto p(2\\lambda(\\Delta_p))^{\\frac1p}$ is locally increasing, while the function $p\\mapsto 2^{-p}\\lambda(\\Delta_p)$ is locally decreasing. As a special class of homological eigenvalues, the min-max eigenvalues $\\lambda_1(\\Delta_p)$, $\\cdots$, $\\lambda_k(\\Delta_p)$, $\\cdots$, are locally Lipschitz continuous with respect to $p\\in[1,+\\infty)$. We also establish the monotonicity of $p(2\\lambda_k(\\Delta_p))^{\\frac1p}$ and $2^{-p}\\lambda_k(\\Delta_p)$ with respect to $p\\in[1,+\\infty)$. These results systematically establish a refined analysis of $\\Delta_p$-eigenvalues for varying $p$, which lead to several applications, including: (1) settle an open problem by Amghibech on the monotonicity of some function involving eigenvalues of $p$-Laplacian with respect to $p$; (2) resolve a question asking whether the third eigenvalue of graph $p$-Laplacian is of min-max form; (3) refine the higher order Cheeger inequalities for graph $p$-Laplacians by Tudisco and Hein, and extend the multi-way Cheeger inequality by Lee, Oveis Gharan and Trevisan to the $p$-Laplacian case. Furthermore, for the 1-Laplacian case, we characterize the homological eigenvalues and min-max eigenvalues from the perspective of topological combinatorics, where our idea is similar to the authors' work on discrete Morse theory.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Homological Eigenvalues of graph p-Laplacians\",\"authors\":\"Dong Zhang\",\"doi\":\"10.1142/s1793525323500346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by persistent homology in topological data analysis, we introduce the homological eigenvalues of the graph $p$-Laplacian $\\\\Delta_p$, which allows us to analyse and classify non-variational eigenvalues. We show the stability of homological eigenvalues, and we prove that for any homological eigenvalue $\\\\lambda(\\\\Delta_p)$, the function $p\\\\mapsto p(2\\\\lambda(\\\\Delta_p))^{\\\\frac1p}$ is locally increasing, while the function $p\\\\mapsto 2^{-p}\\\\lambda(\\\\Delta_p)$ is locally decreasing. As a special class of homological eigenvalues, the min-max eigenvalues $\\\\lambda_1(\\\\Delta_p)$, $\\\\cdots$, $\\\\lambda_k(\\\\Delta_p)$, $\\\\cdots$, are locally Lipschitz continuous with respect to $p\\\\in[1,+\\\\infty)$. We also establish the monotonicity of $p(2\\\\lambda_k(\\\\Delta_p))^{\\\\frac1p}$ and $2^{-p}\\\\lambda_k(\\\\Delta_p)$ with respect to $p\\\\in[1,+\\\\infty)$. These results systematically establish a refined analysis of $\\\\Delta_p$-eigenvalues for varying $p$, which lead to several applications, including: (1) settle an open problem by Amghibech on the monotonicity of some function involving eigenvalues of $p$-Laplacian with respect to $p$; (2) resolve a question asking whether the third eigenvalue of graph $p$-Laplacian is of min-max form; (3) refine the higher order Cheeger inequalities for graph $p$-Laplacians by Tudisco and Hein, and extend the multi-way Cheeger inequality by Lee, Oveis Gharan and Trevisan to the $p$-Laplacian case. Furthermore, for the 1-Laplacian case, we characterize the homological eigenvalues and min-max eigenvalues from the perspective of topological combinatorics, where our idea is similar to the authors' work on discrete Morse theory.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500346\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500346","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

受拓扑数据分析中的持续同调的启发,我们引入了图$p$ -Laplacian $\Delta_p$的同调特征值,它允许我们分析和分类非变分特征值。我们证明了同调特征值的稳定性,并证明了对于任意同调特征值$\lambda(\Delta_p)$,函数$p\mapsto p(2\lambda(\Delta_p))^{\frac1p}$是局部递增的,而函数$p\mapsto 2^{-p}\lambda(\Delta_p)$是局部递减的。作为一类特殊的同调特征值,最小最大特征值$\lambda_1(\Delta_p)$, $\cdots$, $\lambda_k(\Delta_p)$, $\cdots$相对于$p\in[1,+\infty)$是局部Lipschitz连续的。并建立了$p(2\lambda_k(\Delta_p))^{\frac1p}$和$2^{-p}\lambda_k(\Delta_p)$对$p\in[1,+\infty)$的单调性。这些结果系统地建立了对变化$p$的$\Delta_p$ -特征值的精细分析,这导致了几个应用,包括:(1)用Amghibech解决了关于$p$ -拉普拉斯特征值关于$p$的某些函数的单调性的开放问题;(2)解决了图$p$ -Laplacian的第三特征值是否为最小-极大形式的问题;(3) Tudisco和Hein改进了图$p$ -拉普拉斯的高阶Cheeger不等式,并将Lee、Oveis Gharan和Trevisan的多路Cheeger不等式推广到$p$ -拉普拉斯情况。此外,对于1-拉普拉斯情况,我们从拓扑组合的角度刻画了同调特征值和最小-最大特征值,其中我们的思想类似于作者在离散莫尔斯理论方面的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological Eigenvalues of graph p-Laplacians
Inspired by persistent homology in topological data analysis, we introduce the homological eigenvalues of the graph $p$-Laplacian $\Delta_p$, which allows us to analyse and classify non-variational eigenvalues. We show the stability of homological eigenvalues, and we prove that for any homological eigenvalue $\lambda(\Delta_p)$, the function $p\mapsto p(2\lambda(\Delta_p))^{\frac1p}$ is locally increasing, while the function $p\mapsto 2^{-p}\lambda(\Delta_p)$ is locally decreasing. As a special class of homological eigenvalues, the min-max eigenvalues $\lambda_1(\Delta_p)$, $\cdots$, $\lambda_k(\Delta_p)$, $\cdots$, are locally Lipschitz continuous with respect to $p\in[1,+\infty)$. We also establish the monotonicity of $p(2\lambda_k(\Delta_p))^{\frac1p}$ and $2^{-p}\lambda_k(\Delta_p)$ with respect to $p\in[1,+\infty)$. These results systematically establish a refined analysis of $\Delta_p$-eigenvalues for varying $p$, which lead to several applications, including: (1) settle an open problem by Amghibech on the monotonicity of some function involving eigenvalues of $p$-Laplacian with respect to $p$; (2) resolve a question asking whether the third eigenvalue of graph $p$-Laplacian is of min-max form; (3) refine the higher order Cheeger inequalities for graph $p$-Laplacians by Tudisco and Hein, and extend the multi-way Cheeger inequality by Lee, Oveis Gharan and Trevisan to the $p$-Laplacian case. Furthermore, for the 1-Laplacian case, we characterize the homological eigenvalues and min-max eigenvalues from the perspective of topological combinatorics, where our idea is similar to the authors' work on discrete Morse theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信