{"title":"利用红外测温仪和曲线拟合估算静止空气对流系数","authors":"T. Yener, S. Yener, R. Mutlu","doi":"10.30931/jetas.598862","DOIUrl":null,"url":null,"abstract":"The convection coefficient is an important thermal property. In this study, using an infrared thermometer, the convection coefficient of still air is estimated. First, the sample is heated in a sintering oven, then placed on a wood table for obtaining an almost adiabatic boundary, finally its temperature is recorded with respect to time using an infrared thermometer. The data is curve-fitted to find the sample temperature as a function of time. Using the sample’s physical dimensions, the specific heat capacity and the mass of the sample, the convection coefficient of still air is estimated.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"CONVECTION COEFFICIENT ESTIMATION OF STILL AIR USING AN INFRARED THERMOMETER AND CURVE-FITTING\",\"authors\":\"T. Yener, S. Yener, R. Mutlu\",\"doi\":\"10.30931/jetas.598862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convection coefficient is an important thermal property. In this study, using an infrared thermometer, the convection coefficient of still air is estimated. First, the sample is heated in a sintering oven, then placed on a wood table for obtaining an almost adiabatic boundary, finally its temperature is recorded with respect to time using an infrared thermometer. The data is curve-fitted to find the sample temperature as a function of time. Using the sample’s physical dimensions, the specific heat capacity and the mass of the sample, the convection coefficient of still air is estimated.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30931/jetas.598862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/jetas.598862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CONVECTION COEFFICIENT ESTIMATION OF STILL AIR USING AN INFRARED THERMOMETER AND CURVE-FITTING
The convection coefficient is an important thermal property. In this study, using an infrared thermometer, the convection coefficient of still air is estimated. First, the sample is heated in a sintering oven, then placed on a wood table for obtaining an almost adiabatic boundary, finally its temperature is recorded with respect to time using an infrared thermometer. The data is curve-fitted to find the sample temperature as a function of time. Using the sample’s physical dimensions, the specific heat capacity and the mass of the sample, the convection coefficient of still air is estimated.