论平面图形的平面边长比

Q4 Mathematics
Manuel Borrazzo, Fabrizio Frati
{"title":"论平面图形的平面边长比","authors":"Manuel Borrazzo, Fabrizio Frati","doi":"10.20382/jocg.v11i1a6","DOIUrl":null,"url":null,"abstract":"The edge-length ratio of a straight-line drawing of a graph is the ratio between the lengths of the longest and of the shortest edge in the drawing. The planar edge-length ratio of a planar graph is the minimum edge-length ratio of any planar straight-line drawing of the graph. \nIn this paper, we study the planar edge-length ratio of planar graphs. We prove that there exist $n$-vertex planar graphs whose planar edge-length ratio is in $\\Omega(n)$; this bound is tight. We also prove upper bounds on the planar edge-length ratio of several families of planar graphs, including series-parallel graphs and bipartite planar graphs.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"81 1","pages":"137-155"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the planar edge-length ratio of planar graphs\",\"authors\":\"Manuel Borrazzo, Fabrizio Frati\",\"doi\":\"10.20382/jocg.v11i1a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge-length ratio of a straight-line drawing of a graph is the ratio between the lengths of the longest and of the shortest edge in the drawing. The planar edge-length ratio of a planar graph is the minimum edge-length ratio of any planar straight-line drawing of the graph. \\nIn this paper, we study the planar edge-length ratio of planar graphs. We prove that there exist $n$-vertex planar graphs whose planar edge-length ratio is in $\\\\Omega(n)$; this bound is tight. We also prove upper bounds on the planar edge-length ratio of several families of planar graphs, including series-parallel graphs and bipartite planar graphs.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"81 1\",\"pages\":\"137-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v11i1a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v11i1a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

直线绘图的边长比是绘图中最长边和最短边的长度之比。平面图形的平面边长比是图形的任何平面直线绘制的最小边长比。本文研究了平面图的平面边长比。证明了存在$n$顶点的平面图,其平面边长比在$\ ω (n)$;这个界限很紧。我们还证明了几类平面图的边长比的上界,其中包括系列平行图和二部平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the planar edge-length ratio of planar graphs
The edge-length ratio of a straight-line drawing of a graph is the ratio between the lengths of the longest and of the shortest edge in the drawing. The planar edge-length ratio of a planar graph is the minimum edge-length ratio of any planar straight-line drawing of the graph. In this paper, we study the planar edge-length ratio of planar graphs. We prove that there exist $n$-vertex planar graphs whose planar edge-length ratio is in $\Omega(n)$; this bound is tight. We also prove upper bounds on the planar edge-length ratio of several families of planar graphs, including series-parallel graphs and bipartite planar graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信