带监督的序列图变分自编码器对AD纵向Β-Amyloid的解纠缠表示

Fan Yang, Guorong Wu, Won Hwa Kim
{"title":"带监督的序列图变分自编码器对AD纵向Β-Amyloid的解纠缠表示","authors":"Fan Yang, Guorong Wu, Won Hwa Kim","doi":"10.1109/ISBI52829.2022.9761588","DOIUrl":null,"url":null,"abstract":"The emergence of Positron Emission Tomography (PET) imaging allows us to quantify the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease (AD). However, the invasive exposure to radiation and high imaging cost significantly restrict the application of PET in characterizing the evolution of pathology burden which often requires longitudinal PET image sequences. In this regard, we propose a proof-of-concept solution to generate the complete trajectory of pathological events throughout the brain based on very limited number of PET scans. We present a novel variational autoencoder model to learn a latent population-level representation of neurodegeneration process based on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic stages. As the propagation of pathological burdens follow the topology of brain connectome, we further cast our neural network into a supervised sequential graph VAE, where we use the brain network to guide the representation learning. Experiments show that the disentangled representation can capture disease-related dynamics of amyloid and forecast the level of amyloid depositions at future time points.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangled Representation of Longitudinal Β-Amyloid for AD Via Sequential Graph Variational Autoencoder with Supervision\",\"authors\":\"Fan Yang, Guorong Wu, Won Hwa Kim\",\"doi\":\"10.1109/ISBI52829.2022.9761588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of Positron Emission Tomography (PET) imaging allows us to quantify the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease (AD). However, the invasive exposure to radiation and high imaging cost significantly restrict the application of PET in characterizing the evolution of pathology burden which often requires longitudinal PET image sequences. In this regard, we propose a proof-of-concept solution to generate the complete trajectory of pathological events throughout the brain based on very limited number of PET scans. We present a novel variational autoencoder model to learn a latent population-level representation of neurodegeneration process based on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic stages. As the propagation of pathological burdens follow the topology of brain connectome, we further cast our neural network into a supervised sequential graph VAE, where we use the brain network to guide the representation learning. Experiments show that the disentangled representation can capture disease-related dynamics of amyloid and forecast the level of amyloid depositions at future time points.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)成像的出现使我们能够量化体内淀粉样斑块的负担,这是阿尔茨海默病(AD)的标志之一。然而,具有侵入性的辐射暴露和高昂的成像成本,极大地限制了PET在病理负担演变表征中的应用,这往往需要纵向PET图像序列。在这方面,我们提出了一种概念验证解决方案,以基于非常有限的PET扫描生成整个大脑病理事件的完整轨迹。我们提出了一种新的变分自编码器模型,基于每个脑区和纵向诊断阶段的纵向β-淀粉样蛋白测量来学习神经变性过程的潜在群体水平表示。由于病理负荷的传播遵循脑连接组的拓扑结构,我们进一步将神经网络转化为有监督序列图VAE,利用脑网络指导表征学习。实验表明,解纠缠表示可以捕获淀粉样蛋白的疾病相关动态,并预测未来时间点淀粉样蛋白沉积的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangled Representation of Longitudinal Β-Amyloid for AD Via Sequential Graph Variational Autoencoder with Supervision
The emergence of Positron Emission Tomography (PET) imaging allows us to quantify the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease (AD). However, the invasive exposure to radiation and high imaging cost significantly restrict the application of PET in characterizing the evolution of pathology burden which often requires longitudinal PET image sequences. In this regard, we propose a proof-of-concept solution to generate the complete trajectory of pathological events throughout the brain based on very limited number of PET scans. We present a novel variational autoencoder model to learn a latent population-level representation of neurodegeneration process based on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic stages. As the propagation of pathological burdens follow the topology of brain connectome, we further cast our neural network into a supervised sequential graph VAE, where we use the brain network to guide the representation learning. Experiments show that the disentangled representation can capture disease-related dynamics of amyloid and forecast the level of amyloid depositions at future time points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信