I. V. Zagorodnev, D. A. Rodionov, A. A. Zabolotnykh
{"title":"延迟对二维电子气盘中等离子体共振频率和线宽的影响","authors":"I. V. Zagorodnev, D. A. Rodionov, A. A. Zabolotnykh","doi":"10.1103/PhysRevB.103.195431","DOIUrl":null,"url":null,"abstract":"We theoretically analyze dominant plasma modes in a two-dimensional disk of electron gas by calculating the absorption of an incident electromagnetic wave. The problem is solved in a self-consistent approximation, taking into account electromagnetic retardation effects. We use the Drude model to describe the conductivity of the system. The absorption spectrum exhibits a series of peaks corresponding to the excitation of plasma waves. The position and linewidth of the peaks designating, respectively, the frequency and damping rate of the plasma modes. We estimate the influence of retardation effects on the frequency and linewidth of the fundamental (dipole) and axisymmetric (quadrupole) plasma modes both numerically and analytically. We find the net damping rate of the modes to be dependent on not only the sum of the radiative and collisional decays but also their intermixture, even for small retardation. We show that the net damping rate can be noticeably less than that determined by collisions alone.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of retardation on the frequency and linewidth of plasma resonances in a two-dimensional disk of electron gas\",\"authors\":\"I. V. Zagorodnev, D. A. Rodionov, A. A. Zabolotnykh\",\"doi\":\"10.1103/PhysRevB.103.195431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically analyze dominant plasma modes in a two-dimensional disk of electron gas by calculating the absorption of an incident electromagnetic wave. The problem is solved in a self-consistent approximation, taking into account electromagnetic retardation effects. We use the Drude model to describe the conductivity of the system. The absorption spectrum exhibits a series of peaks corresponding to the excitation of plasma waves. The position and linewidth of the peaks designating, respectively, the frequency and damping rate of the plasma modes. We estimate the influence of retardation effects on the frequency and linewidth of the fundamental (dipole) and axisymmetric (quadrupole) plasma modes both numerically and analytically. We find the net damping rate of the modes to be dependent on not only the sum of the radiative and collisional decays but also their intermixture, even for small retardation. We show that the net damping rate can be noticeably less than that determined by collisions alone.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.195431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.195431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of retardation on the frequency and linewidth of plasma resonances in a two-dimensional disk of electron gas
We theoretically analyze dominant plasma modes in a two-dimensional disk of electron gas by calculating the absorption of an incident electromagnetic wave. The problem is solved in a self-consistent approximation, taking into account electromagnetic retardation effects. We use the Drude model to describe the conductivity of the system. The absorption spectrum exhibits a series of peaks corresponding to the excitation of plasma waves. The position and linewidth of the peaks designating, respectively, the frequency and damping rate of the plasma modes. We estimate the influence of retardation effects on the frequency and linewidth of the fundamental (dipole) and axisymmetric (quadrupole) plasma modes both numerically and analytically. We find the net damping rate of the modes to be dependent on not only the sum of the radiative and collisional decays but also their intermixture, even for small retardation. We show that the net damping rate can be noticeably less than that determined by collisions alone.