固溶ReS2 - xTex(0≤x≤1)纳米片的合成与表征

Shutaro Kawawa, Keitaro Tezuka, Yue Jin Shan
{"title":"固溶ReS2 - xTex(0≤x≤1)纳米片的合成与表征","authors":"Shutaro Kawawa, Keitaro Tezuka, Yue Jin Shan","doi":"10.1002/pssa.202300337","DOIUrl":null,"url":null,"abstract":"ReS2 nanosheets have recently attracted attention because of their excellent electrocatalytic properties. It has also been reported that the electrocatalytic activity of solid‐solution ReS2−xSex nanosheets is improved by tuning the bandgap structure through a solid solution with Se. However, Se has application limitations in that it is highly toxic. Thus, herein, solid‐solution ReS2−xTex nanosheets are focused. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) bulk is synthesized by solid‐state reactions. The optical bandgaps of ReS2, ReS1.5Te0.5, and ReSTe are measured to be 1.29, 1.07, and 0.99 eV, respectively. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) nanosheets are obtained by the ultrasonic exfoliation and Li‐intercalation exfoliation of the ReS2−xTex bulks. The typical lateral sizes and thicknesses of the ReS2, ReS1.5Te0.5, and ReSTe nanosheets by ultrasonic exfoliation are 200 and 6 nm, 160 and 3 nm, and 600 and 2 nm, respectively. The typical lateral sizes and thicknesses of ReS2, ReS1.5Te0.5, and ReSTe nanosheets using the Li‐intercalation exfoliation method are 150 and 2 nm, 100 and 1 nm, and 100 and 1 nm, respectively. In the nanosheets obtained from both exfoliation methods, the lateral size is not composition‐dependent, and the thickness decreases with increasing x in ReS2−xTex.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Solid‐Solution ReS2−xTex (0 ≤ x ≤ 1) Nanosheets\",\"authors\":\"Shutaro Kawawa, Keitaro Tezuka, Yue Jin Shan\",\"doi\":\"10.1002/pssa.202300337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ReS2 nanosheets have recently attracted attention because of their excellent electrocatalytic properties. It has also been reported that the electrocatalytic activity of solid‐solution ReS2−xSex nanosheets is improved by tuning the bandgap structure through a solid solution with Se. However, Se has application limitations in that it is highly toxic. Thus, herein, solid‐solution ReS2−xTex nanosheets are focused. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) bulk is synthesized by solid‐state reactions. The optical bandgaps of ReS2, ReS1.5Te0.5, and ReSTe are measured to be 1.29, 1.07, and 0.99 eV, respectively. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) nanosheets are obtained by the ultrasonic exfoliation and Li‐intercalation exfoliation of the ReS2−xTex bulks. The typical lateral sizes and thicknesses of the ReS2, ReS1.5Te0.5, and ReSTe nanosheets by ultrasonic exfoliation are 200 and 6 nm, 160 and 3 nm, and 600 and 2 nm, respectively. The typical lateral sizes and thicknesses of ReS2, ReS1.5Te0.5, and ReSTe nanosheets using the Li‐intercalation exfoliation method are 150 and 2 nm, 100 and 1 nm, and 100 and 1 nm, respectively. In the nanosheets obtained from both exfoliation methods, the lateral size is not composition‐dependent, and the thickness decreases with increasing x in ReS2−xTex.\",\"PeriodicalId\":87717,\"journal\":{\"name\":\"Physica status solidi (A): Applied research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi (A): Applied research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ReS2纳米片由于其优异的电催化性能,近年来引起了人们的广泛关注。也有报道称,固溶体ReS2 - xSex纳米片的电催化活性可以通过与Se的固溶体调节带隙结构来提高。然而,硒具有高毒性,因此具有应用局限性。因此,本文重点研究了固溶体ReS2 - xTex纳米片。固溶体ReS2 - xTex (x = 0,0.5和1.0)是通过固相反应合成的。ReS2、ReS1.5Te0.5和ReSTe的光带隙分别为1.29、1.07和0.99 eV。通过超声剥离和Li -插层剥离ReS2 - xTex块体获得固溶体ReS2 - xTex (x = 0,0.5和1.0)纳米片。超声剥离的ReS2、ReS1.5Te0.5和ReSTe纳米片的典型横向尺寸和厚度分别为200和6 nm、160和3 nm、600和2 nm。采用Li‐插层剥离方法制备的ReS2、ReS1.5Te0.5和ReSTe纳米片的典型横向尺寸和厚度分别为150 nm和2nm、100 nm和1nm,以及100 nm和1nm。在两种剥离方法中获得的纳米片中,横向尺寸与成分无关,ReS2 - xTex中厚度随x的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization of Solid‐Solution ReS2−xTex (0 ≤ x ≤ 1) Nanosheets
ReS2 nanosheets have recently attracted attention because of their excellent electrocatalytic properties. It has also been reported that the electrocatalytic activity of solid‐solution ReS2−xSex nanosheets is improved by tuning the bandgap structure through a solid solution with Se. However, Se has application limitations in that it is highly toxic. Thus, herein, solid‐solution ReS2−xTex nanosheets are focused. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) bulk is synthesized by solid‐state reactions. The optical bandgaps of ReS2, ReS1.5Te0.5, and ReSTe are measured to be 1.29, 1.07, and 0.99 eV, respectively. Solid‐solution ReS2−xTex (x = 0, 0.5, and 1.0) nanosheets are obtained by the ultrasonic exfoliation and Li‐intercalation exfoliation of the ReS2−xTex bulks. The typical lateral sizes and thicknesses of the ReS2, ReS1.5Te0.5, and ReSTe nanosheets by ultrasonic exfoliation are 200 and 6 nm, 160 and 3 nm, and 600 and 2 nm, respectively. The typical lateral sizes and thicknesses of ReS2, ReS1.5Te0.5, and ReSTe nanosheets using the Li‐intercalation exfoliation method are 150 and 2 nm, 100 and 1 nm, and 100 and 1 nm, respectively. In the nanosheets obtained from both exfoliation methods, the lateral size is not composition‐dependent, and the thickness decreases with increasing x in ReS2−xTex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信