Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana
{"title":"Bowditch拉紧谱和群的维数","authors":"Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana","doi":"10.1307/mmj/20216121","DOIUrl":null,"url":null,"abstract":"For a finitely generated group $G$, let $H(G)$ denote Bowditch's taut loop length spectrum. We prove that if $G=(A\\ast B) / \\langle\\!\\langle \\mathcal R \\rangle\\!\\rangle $ is a $C'(1/12)$ small cancellation quotient of a the free product of finitely generated groups, then $H(G)$ is equivalent to $H(A) \\cup H(B)$. We use this result together with bounds for cohomological and geometric dimensions, as well as Bowditch's construction of continuously many non-quasi-isometric $C'(1/6)$ small cancellation $2$-generated groups to obtain our main result: Let $\\mathcal{G}$ denote the class of finitely generated groups. The following subclasses contain continuously many one-ended non-quasi-isometric groups: $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\underline{\\mathrm{cd}}(G) = 2 \\text{ and } \\underline{\\mathrm{gd}}(G) = 3 \\right\\}$ $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\underline{\\underline{\\mathrm{cd}}}(G) = 2 \\text{ and } \\underline{\\underline{\\mathrm{gd}}}(G) = 3 \\right\\}$ $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\mathrm{cd}_{\\mathbb{Q}}(G)=2 \\text{ and } \\mathrm{cd}_{\\mathbb{Z}}(G)=3 \\right\\}$ On our way to proving the aforementioned results, we show that the classes defined above are closed under taking relatively finitely presented $C'(1/12)$ small cancellation quotients of free products, in particular, this produces new examples of groups exhibiting an Eilenberg-Ganea phenomenon for families. We also show that if there is a finitely presented counter-example to the Eilenberg-Ganea conjecture, then there are continuously many finitely generated one-ended non-quasi-isometric counter-examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bowditch Taut Spectrum and Dimensions of Groups\",\"authors\":\"Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana\",\"doi\":\"10.1307/mmj/20216121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finitely generated group $G$, let $H(G)$ denote Bowditch's taut loop length spectrum. We prove that if $G=(A\\\\ast B) / \\\\langle\\\\!\\\\langle \\\\mathcal R \\\\rangle\\\\!\\\\rangle $ is a $C'(1/12)$ small cancellation quotient of a the free product of finitely generated groups, then $H(G)$ is equivalent to $H(A) \\\\cup H(B)$. We use this result together with bounds for cohomological and geometric dimensions, as well as Bowditch's construction of continuously many non-quasi-isometric $C'(1/6)$ small cancellation $2$-generated groups to obtain our main result: Let $\\\\mathcal{G}$ denote the class of finitely generated groups. The following subclasses contain continuously many one-ended non-quasi-isometric groups: $\\\\bullet\\\\left\\\\{G\\\\in \\\\mathcal{G} \\\\colon \\\\underline{\\\\mathrm{cd}}(G) = 2 \\\\text{ and } \\\\underline{\\\\mathrm{gd}}(G) = 3 \\\\right\\\\}$ $\\\\bullet\\\\left\\\\{G\\\\in \\\\mathcal{G} \\\\colon \\\\underline{\\\\underline{\\\\mathrm{cd}}}(G) = 2 \\\\text{ and } \\\\underline{\\\\underline{\\\\mathrm{gd}}}(G) = 3 \\\\right\\\\}$ $\\\\bullet\\\\left\\\\{G\\\\in \\\\mathcal{G} \\\\colon \\\\mathrm{cd}_{\\\\mathbb{Q}}(G)=2 \\\\text{ and } \\\\mathrm{cd}_{\\\\mathbb{Z}}(G)=3 \\\\right\\\\}$ On our way to proving the aforementioned results, we show that the classes defined above are closed under taking relatively finitely presented $C'(1/12)$ small cancellation quotients of free products, in particular, this produces new examples of groups exhibiting an Eilenberg-Ganea phenomenon for families. We also show that if there is a finitely presented counter-example to the Eilenberg-Ganea conjecture, then there are continuously many finitely generated one-ended non-quasi-isometric counter-examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于有限生成的群$G$,设$H(G)$表示Bowditch的紧环长度谱。证明了如果$G=(A\ast B) / \langle\!\langle \mathcal R \rangle\!\rangle $是有限生成群的自由积的一个$C'(1/12)$小消商,则$H(G)$等价于$H(A) \cup H(B)$。我们将这一结果与上同维和几何维的界以及Bowditch构造的连续许多非拟等距$C'(1/6)$小消去$2$生成群结合起来,得到了我们的主要结果:设$\mathcal{G}$表示有限生成群的类别。下面的子类包含连续的许多单端非拟等长群:$\bullet\left\{G\in \mathcal{G} \colon \underline{\mathrm{cd}}(G) = 2 \text{ and } \underline{\mathrm{gd}}(G) = 3 \right\}$$\bullet\left\{G\in \mathcal{G} \colon \underline{\underline{\mathrm{cd}}}(G) = 2 \text{ and } \underline{\underline{\mathrm{gd}}}(G) = 3 \right\}$$\bullet\left\{G\in \mathcal{G} \colon \mathrm{cd}_{\mathbb{Q}}(G)=2 \text{ and } \mathrm{cd}_{\mathbb{Z}}(G)=3 \right\}$在我们证明上述结果的过程中,我们证明了上面定义的类在相对有限的情况下是封闭的$C'(1/12)$小的自由积的消商,特别是,这产生了显示家庭的Eilenberg-Ganea现象的群的新例子。我们还证明了如果存在一个有限生成的Eilenberg-Ganea猜想的反例,那么就存在连续多个有限生成的单端非拟等距反例。
For a finitely generated group $G$, let $H(G)$ denote Bowditch's taut loop length spectrum. We prove that if $G=(A\ast B) / \langle\!\langle \mathcal R \rangle\!\rangle $ is a $C'(1/12)$ small cancellation quotient of a the free product of finitely generated groups, then $H(G)$ is equivalent to $H(A) \cup H(B)$. We use this result together with bounds for cohomological and geometric dimensions, as well as Bowditch's construction of continuously many non-quasi-isometric $C'(1/6)$ small cancellation $2$-generated groups to obtain our main result: Let $\mathcal{G}$ denote the class of finitely generated groups. The following subclasses contain continuously many one-ended non-quasi-isometric groups: $\bullet\left\{G\in \mathcal{G} \colon \underline{\mathrm{cd}}(G) = 2 \text{ and } \underline{\mathrm{gd}}(G) = 3 \right\}$ $\bullet\left\{G\in \mathcal{G} \colon \underline{\underline{\mathrm{cd}}}(G) = 2 \text{ and } \underline{\underline{\mathrm{gd}}}(G) = 3 \right\}$ $\bullet\left\{G\in \mathcal{G} \colon \mathrm{cd}_{\mathbb{Q}}(G)=2 \text{ and } \mathrm{cd}_{\mathbb{Z}}(G)=3 \right\}$ On our way to proving the aforementioned results, we show that the classes defined above are closed under taking relatively finitely presented $C'(1/12)$ small cancellation quotients of free products, in particular, this produces new examples of groups exhibiting an Eilenberg-Ganea phenomenon for families. We also show that if there is a finitely presented counter-example to the Eilenberg-Ganea conjecture, then there are continuously many finitely generated one-ended non-quasi-isometric counter-examples.