光聚合增材制造材料:打印过程建模、机械行为和灵敏度分析

Mattia Pancrazio Cosma, Roberto Brighenti
{"title":"光聚合增材制造材料:打印过程建模、机械行为和灵敏度分析","authors":"Mattia Pancrazio Cosma,&nbsp;Roberto Brighenti","doi":"10.1002/mdp2.225","DOIUrl":null,"url":null,"abstract":"<p>The physical–chemical processes involved in light-induced polymerization (photopolymerization) are widely exploited in additive manufacturing (AM) technologies such as Stereolithography and Digital Light Processing. The influence of the AM process parameters on the physical properties of manufactured components has been often investigated through empirical methods based on the trial and error approach, that is, by collecting and interpreting a large amount of experimental data. However, when desired physical properties are required, accurate modeling of the liquid–solid conversion is necessary. In this work, in order to determine the properties of the resulting material according to the adopted process setup, we present a multi-physics approach to model the physical–chemical transformation taking place in photopolymerization. The role played on the final mechanical properties by the laser light intensity and by its moving speed is considered. Further, the influence of the uncertainty of the process parameters is investigated through a sensitivity analysis. The proposed approach is suitable for investigating the reliability of additively manufactured components as well as for their design according to an optimum printing strategy. From the perspective of making innovative functional materials, the proposed multi-physics model allows tuning the printing process in order to get the desired distribution of mechanical properties.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.225","citationCount":"1","resultStr":"{\"title\":\"Photopolymerized additive manufacturing materials: Modeling of the printing process, mechanical behavior, and sensitivity analysis\",\"authors\":\"Mattia Pancrazio Cosma,&nbsp;Roberto Brighenti\",\"doi\":\"10.1002/mdp2.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The physical–chemical processes involved in light-induced polymerization (photopolymerization) are widely exploited in additive manufacturing (AM) technologies such as Stereolithography and Digital Light Processing. The influence of the AM process parameters on the physical properties of manufactured components has been often investigated through empirical methods based on the trial and error approach, that is, by collecting and interpreting a large amount of experimental data. However, when desired physical properties are required, accurate modeling of the liquid–solid conversion is necessary. In this work, in order to determine the properties of the resulting material according to the adopted process setup, we present a multi-physics approach to model the physical–chemical transformation taking place in photopolymerization. The role played on the final mechanical properties by the laser light intensity and by its moving speed is considered. Further, the influence of the uncertainty of the process parameters is investigated through a sensitivity analysis. The proposed approach is suitable for investigating the reliability of additively manufactured components as well as for their design according to an optimum printing strategy. From the perspective of making innovative functional materials, the proposed multi-physics model allows tuning the printing process in order to get the desired distribution of mechanical properties.</p>\",\"PeriodicalId\":100886,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/mdp2.225\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光诱导聚合(光聚合)的物理化学过程被广泛应用于增材制造(AM)技术,如立体光刻和数字光处理。增材制造工艺参数对制造部件物理性能的影响通常通过基于试错法的经验方法进行研究,即通过收集和解释大量的实验数据。然而,当需要所需的物理性质时,需要对液固转换进行精确的建模。在这项工作中,为了根据所采用的工艺设置确定所得材料的性质,我们提出了一种多物理场方法来模拟光聚合中发生的物理化学转变。考虑了激光光强和运动速度对最终力学性能的影响。进一步,通过灵敏度分析探讨了工艺参数不确定度的影响。该方法适用于研究增材制造部件的可靠性以及根据最优打印策略进行增材制造部件的设计。从制造创新功能材料的角度来看,所提出的多物理场模型允许调整打印过程,以获得所需的机械性能分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photopolymerized additive manufacturing materials: Modeling of the printing process, mechanical behavior, and sensitivity analysis

Photopolymerized additive manufacturing materials: Modeling of the printing process, mechanical behavior, and sensitivity analysis

The physical–chemical processes involved in light-induced polymerization (photopolymerization) are widely exploited in additive manufacturing (AM) technologies such as Stereolithography and Digital Light Processing. The influence of the AM process parameters on the physical properties of manufactured components has been often investigated through empirical methods based on the trial and error approach, that is, by collecting and interpreting a large amount of experimental data. However, when desired physical properties are required, accurate modeling of the liquid–solid conversion is necessary. In this work, in order to determine the properties of the resulting material according to the adopted process setup, we present a multi-physics approach to model the physical–chemical transformation taking place in photopolymerization. The role played on the final mechanical properties by the laser light intensity and by its moving speed is considered. Further, the influence of the uncertainty of the process parameters is investigated through a sensitivity analysis. The proposed approach is suitable for investigating the reliability of additively manufactured components as well as for their design according to an optimum printing strategy. From the perspective of making innovative functional materials, the proposed multi-physics model allows tuning the printing process in order to get the desired distribution of mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信