具有旋转对称性的嵌入式自收缩体的熵界、紧致性和有限性定理

IF 1.2 1区 数学 Q1 MATHEMATICS
John Man-shun Ma, A. Muhammad, Niels Moller
{"title":"具有旋转对称性的嵌入式自收缩体的熵界、紧致性和有限性定理","authors":"John Man-shun Ma, A. Muhammad, Niels Moller","doi":"10.1515/crelle-2022-0073","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we study the space of complete embedded rotationally symmetric self-shrinking hypersurfaces in ℝ n + 1 {\\mathbb{R}^{n+1}} . First, using comparison geometry in the context of metric geometry, we derive explicit upper bounds for the entropy of all such self-shrinkers. Second, as an application we prove a smooth compactness theorem on the space of all such shrinkers. We also prove that there are only finitely many such self-shrinkers with an extra reflection symmetry.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"12 1","pages":"239 - 259"},"PeriodicalIF":1.2000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Entropy bounds, compactness and finiteness theorems for embedded self-shrinkers with rotational symmetry\",\"authors\":\"John Man-shun Ma, A. Muhammad, Niels Moller\",\"doi\":\"10.1515/crelle-2022-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we study the space of complete embedded rotationally symmetric self-shrinking hypersurfaces in ℝ n + 1 {\\\\mathbb{R}^{n+1}} . First, using comparison geometry in the context of metric geometry, we derive explicit upper bounds for the entropy of all such self-shrinkers. Second, as an application we prove a smooth compactness theorem on the space of all such shrinkers. We also prove that there are only finitely many such self-shrinkers with an extra reflection symmetry.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"12 1\",\"pages\":\"239 - 259\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0073\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0073","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了在n+1 {\mathbb{R}^{n+1}}中完全嵌入旋转对称自收缩超曲面的空间。首先,在度量几何的背景下使用比较几何,我们推导出所有这些自收缩物的熵的显式上界。其次,作为一个应用,我们证明了所有这类收缩器空间上的光滑紧性定理。我们还证明了具有额外反射对称性的这种自收缩体只有有限多个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy bounds, compactness and finiteness theorems for embedded self-shrinkers with rotational symmetry
Abstract In this work, we study the space of complete embedded rotationally symmetric self-shrinking hypersurfaces in ℝ n + 1 {\mathbb{R}^{n+1}} . First, using comparison geometry in the context of metric geometry, we derive explicit upper bounds for the entropy of all such self-shrinkers. Second, as an application we prove a smooth compactness theorem on the space of all such shrinkers. We also prove that there are only finitely many such self-shrinkers with an extra reflection symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信