不连续非线性Sturm - Liouville问题的控制与摄动

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
O. Baskov, D. Potapov
{"title":"不连续非线性Sturm - Liouville问题的控制与摄动","authors":"O. Baskov, D. Potapov","doi":"10.21638/11701/spbu10.2023.212","DOIUrl":null,"url":null,"abstract":"We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol’dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"36 4 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control and perturbation in Sturm — Liouville’s problem with discontinuous nonlinearity\",\"authors\":\"O. Baskov, D. Potapov\",\"doi\":\"10.21638/11701/spbu10.2023.212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol’dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"36 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2023.212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有不连续非线性、控制和摄动的Sturm - Liouville问题。将已有的具有谱参数和不连续算子的方程的结果应用于该问题。利用变分方法,我们建立了不连续非线性Sturm - Liouville问题解的存在性定理和最优控制问题解的存在性定理,以及可接受的“控制状态”对集合的拓扑性质。作为一个应用,给出了不可压缩流体的控制和扰动分离流动的Gol’shtik模型的一维模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control and perturbation in Sturm — Liouville’s problem with discontinuous nonlinearity
We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol’dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信