Maxwell-Stefan-Cahn-Hilliard系统的存在性和弱-强唯一性

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Xiaokai Huo, A. Jungel, A. Tzavaras
{"title":"Maxwell-Stefan-Cahn-Hilliard系统的存在性和弱-强唯一性","authors":"Xiaokai Huo, A. Jungel, A. Tzavaras","doi":"10.4171/aihpc/89","DOIUrl":null,"url":null,"abstract":"A Maxwell-Stefan system for fluid mixtures with driving forces depending on Cahn-Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive definiteness of the matrix on a subspace and using the Bott--Duffin matrix inverse. The global existence of weak solutions and a weak-strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding $H^2(\\Omega)$ bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"107 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence and weak–strong uniqueness for Maxwell–Stefan–Cahn–Hilliard systems\",\"authors\":\"Xiaokai Huo, A. Jungel, A. Tzavaras\",\"doi\":\"10.4171/aihpc/89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Maxwell-Stefan system for fluid mixtures with driving forces depending on Cahn-Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive definiteness of the matrix on a subspace and using the Bott--Duffin matrix inverse. The global existence of weak solutions and a weak-strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding $H^2(\\\\Omega)$ bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/89\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/89","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

分析了基于cahn - hilliard型化学势的驱动流体混合物的Maxwell-Stefan系统。相应的抛物型交叉扩散方程包含四阶导数,并考虑在无通量边界条件下的有界区域内。分析的主要困难是扩散矩阵的简并性,通过证明矩阵在子空间上的正定性和利用Bott- Duffin矩阵逆来克服。弱解的整体存在性和弱-强唯一性通过(相对)能量和熵估计的仔细组合来证明,得到了密度的$H^2(\Omega)$界,这是单独从能量或熵不等式中无法得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and weak–strong uniqueness for Maxwell–Stefan–Cahn–Hilliard systems
A Maxwell-Stefan system for fluid mixtures with driving forces depending on Cahn-Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive definiteness of the matrix on a subspace and using the Bott--Duffin matrix inverse. The global existence of weak solutions and a weak-strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding $H^2(\Omega)$ bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信