改进了强盗反馈下在线内核选择的遗憾边界

Junfan Li, Shizhong Liao
{"title":"改进了强盗反馈下在线内核选择的遗憾边界","authors":"Junfan Li, Shizhong Liao","doi":"10.48550/arXiv.2303.05018","DOIUrl":null,"url":null,"abstract":"In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\\Vert f\\Vert^2_{\\mathcal{H}_i}+1)K^{\\frac{1}{3}}T^{\\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\\frac{2}{3}}K^{-\\frac{1}{3}}(\\sum^K_{i=1}L_T(f^\\ast_i))^{\\frac{2}{3}})$ expected bound where $L_T(f^\\ast_i)$ is the cumulative losses of optimal hypothesis in $\\mathbb{H}_{i}=\\{f\\in\\mathcal{H}_i:\\Vert f\\Vert_{\\mathcal{H}_i}\\leq U\\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\\sqrt{KT}\\ln^{\\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\\sqrt{T\\ln{K}} +\\Vert f\\Vert^2_{\\mathcal{H}_i}\\max\\{\\sqrt{T},\\frac{T}{\\sqrt{\\mathcal{R}}}\\})$ expected bound where $\\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"8 1","pages":"333-348"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Regret Bounds for Online Kernel Selection under Bandit Feedback\",\"authors\":\"Junfan Li, Shizhong Liao\",\"doi\":\"10.48550/arXiv.2303.05018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\\\\Vert f\\\\Vert^2_{\\\\mathcal{H}_i}+1)K^{\\\\frac{1}{3}}T^{\\\\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\\\\frac{2}{3}}K^{-\\\\frac{1}{3}}(\\\\sum^K_{i=1}L_T(f^\\\\ast_i))^{\\\\frac{2}{3}})$ expected bound where $L_T(f^\\\\ast_i)$ is the cumulative losses of optimal hypothesis in $\\\\mathbb{H}_{i}=\\\\{f\\\\in\\\\mathcal{H}_i:\\\\Vert f\\\\Vert_{\\\\mathcal{H}_i}\\\\leq U\\\\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\\\\sqrt{KT}\\\\ln^{\\\\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\\\\sqrt{T\\\\ln{K}} +\\\\Vert f\\\\Vert^2_{\\\\mathcal{H}_i}\\\\max\\\\{\\\\sqrt{T},\\\\frac{T}{\\\\sqrt{\\\\mathcal{R}}}\\\\})$ expected bound where $\\\\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"8 1\",\"pages\":\"333-348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.05018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.05018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文改进了强盗反馈下在线核选择的遗憾界。先前的算法对Lipschitz损失函数具有$O((\Vert f\Vert^2_{\mathcal{H}_i}+1)K^{\frac{1}{3}}T^{\frac{2}{3}})$期望界。我们证明了两种改进前一界的后悔界。对于平滑损失函数,我们提出了一个具有$O(U^{\frac{2}{3}}K^{-\frac{1}{3}}(\sum^K_{i=1}L_T(f^\ast_i))^{\frac{2}{3}})$期望界的算法,其中$L_T(f^\ast_i)$为$\mathbb{H}_{i}=\{f\in\mathcal{H}_i:\Vert f\Vert_{\mathcal{H}_i}\leq U\}$中最优假设的累积损失。与数据相关的边界保持之前的最坏情况边界,如果大多数候选核与数据匹配得很好,则边界更小。对于Lipschitz损失函数,我们提出了一种具有$O(U\sqrt{KT}\ln^{\frac{2}{3}}{T})$期望界的算法,该算法渐近地改进了之前的期望界。我们将这两种算法应用于有时间约束的在线核选择,并证明了新的遗憾边界匹配或改进了先前的$O(\sqrt{T\ln{K}} +\Vert f\Vert^2_{\mathcal{H}_i}\max\{\sqrt{T},\frac{T}{\sqrt{\mathcal{R}}}\})$期望边界,其中$\mathcal{R}$为时间预算。最后,我们在在线回归和分类任务上验证了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Regret Bounds for Online Kernel Selection under Bandit Feedback
In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\Vert f\Vert^2_{\mathcal{H}_i}+1)K^{\frac{1}{3}}T^{\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\frac{2}{3}}K^{-\frac{1}{3}}(\sum^K_{i=1}L_T(f^\ast_i))^{\frac{2}{3}})$ expected bound where $L_T(f^\ast_i)$ is the cumulative losses of optimal hypothesis in $\mathbb{H}_{i}=\{f\in\mathcal{H}_i:\Vert f\Vert_{\mathcal{H}_i}\leq U\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\sqrt{KT}\ln^{\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\sqrt{T\ln{K}} +\Vert f\Vert^2_{\mathcal{H}_i}\max\{\sqrt{T},\frac{T}{\sqrt{\mathcal{R}}}\})$ expected bound where $\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信