{"title":"改进了强盗反馈下在线内核选择的遗憾边界","authors":"Junfan Li, Shizhong Liao","doi":"10.48550/arXiv.2303.05018","DOIUrl":null,"url":null,"abstract":"In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\\Vert f\\Vert^2_{\\mathcal{H}_i}+1)K^{\\frac{1}{3}}T^{\\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\\frac{2}{3}}K^{-\\frac{1}{3}}(\\sum^K_{i=1}L_T(f^\\ast_i))^{\\frac{2}{3}})$ expected bound where $L_T(f^\\ast_i)$ is the cumulative losses of optimal hypothesis in $\\mathbb{H}_{i}=\\{f\\in\\mathcal{H}_i:\\Vert f\\Vert_{\\mathcal{H}_i}\\leq U\\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\\sqrt{KT}\\ln^{\\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\\sqrt{T\\ln{K}} +\\Vert f\\Vert^2_{\\mathcal{H}_i}\\max\\{\\sqrt{T},\\frac{T}{\\sqrt{\\mathcal{R}}}\\})$ expected bound where $\\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"8 1","pages":"333-348"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Regret Bounds for Online Kernel Selection under Bandit Feedback\",\"authors\":\"Junfan Li, Shizhong Liao\",\"doi\":\"10.48550/arXiv.2303.05018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\\\\Vert f\\\\Vert^2_{\\\\mathcal{H}_i}+1)K^{\\\\frac{1}{3}}T^{\\\\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\\\\frac{2}{3}}K^{-\\\\frac{1}{3}}(\\\\sum^K_{i=1}L_T(f^\\\\ast_i))^{\\\\frac{2}{3}})$ expected bound where $L_T(f^\\\\ast_i)$ is the cumulative losses of optimal hypothesis in $\\\\mathbb{H}_{i}=\\\\{f\\\\in\\\\mathcal{H}_i:\\\\Vert f\\\\Vert_{\\\\mathcal{H}_i}\\\\leq U\\\\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\\\\sqrt{KT}\\\\ln^{\\\\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\\\\sqrt{T\\\\ln{K}} +\\\\Vert f\\\\Vert^2_{\\\\mathcal{H}_i}\\\\max\\\\{\\\\sqrt{T},\\\\frac{T}{\\\\sqrt{\\\\mathcal{R}}}\\\\})$ expected bound where $\\\\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"8 1\",\"pages\":\"333-348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.05018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.05018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Regret Bounds for Online Kernel Selection under Bandit Feedback
In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\Vert f\Vert^2_{\mathcal{H}_i}+1)K^{\frac{1}{3}}T^{\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\frac{2}{3}}K^{-\frac{1}{3}}(\sum^K_{i=1}L_T(f^\ast_i))^{\frac{2}{3}})$ expected bound where $L_T(f^\ast_i)$ is the cumulative losses of optimal hypothesis in $\mathbb{H}_{i}=\{f\in\mathcal{H}_i:\Vert f\Vert_{\mathcal{H}_i}\leq U\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\sqrt{KT}\ln^{\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\sqrt{T\ln{K}} +\Vert f\Vert^2_{\mathcal{H}_i}\max\{\sqrt{T},\frac{T}{\sqrt{\mathcal{R}}}\})$ expected bound where $\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.