微波法制备荧光驱动ZnO量子点光降解土霉素

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan
{"title":"微波法制备荧光驱动ZnO量子点光降解土霉素","authors":"Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan","doi":"10.21315/jps2023.34.1.3","DOIUrl":null,"url":null,"abstract":"In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":"85 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photodegradation of Oxytetracycline Using Fluorescent Light Driven ZnO Quantum Dots Synthesised Via Microwave Method\",\"authors\":\"Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan\",\"doi\":\"10.21315/jps2023.34.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.\",\"PeriodicalId\":16757,\"journal\":{\"name\":\"Journal of Physical Science\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/jps2023.34.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文采用微波法制备了Li+离子包覆氧化锌量子点(ZnO QDs)。利用x射线衍射(XRD)、透射电子显微镜(TEM)、高透射电子显微镜(HR-TEM)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-DRS)和光致发光(PL)技术表征了ZnO量子点的结构、形态和光学性质。XRD分析表明ZnO量子点具有六方纤锌矿结构,平均晶粒尺寸为9.9 nm。ZnO量子点形貌为准球形,平均粒径为10 nm。PL分析检测到各种缺陷的存在。这些因素都促进了土霉素在荧光照射下的光降解。在40分钟内,88.3%的OTC被去除,这比文献中报道的散装ZnO要高。由于光催化剂合成方法简单,且光催化工艺要求高,该技术主要面向小畜牧业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photodegradation of Oxytetracycline Using Fluorescent Light Driven ZnO Quantum Dots Synthesised Via Microwave Method
In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physical Science
Journal of Physical Science Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.70
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信