Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan
{"title":"微波法制备荧光驱动ZnO量子点光降解土霉素","authors":"Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan","doi":"10.21315/jps2023.34.1.3","DOIUrl":null,"url":null,"abstract":"In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photodegradation of Oxytetracycline Using Fluorescent Light Driven ZnO Quantum Dots Synthesised Via Microwave Method\",\"authors\":\"Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan\",\"doi\":\"10.21315/jps2023.34.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.\",\"PeriodicalId\":16757,\"journal\":{\"name\":\"Journal of Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/jps2023.34.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Photodegradation of Oxytetracycline Using Fluorescent Light Driven ZnO Quantum Dots Synthesised Via Microwave Method
In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.
期刊介绍:
The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.