基于高斯混合模型的贝叶斯信号检测器设计

V. Jilkov, Jaipal R. Katkuri, Hari K. Nandiraju
{"title":"基于高斯混合模型的贝叶斯信号检测器设计","authors":"V. Jilkov, Jaipal R. Katkuri, Hari K. Nandiraju","doi":"10.1109/SSST.2010.5442823","DOIUrl":null,"url":null,"abstract":"Addressed is the problem of Bayesian detector design for a signal with unknown parameters when the prior distribution of the parameters is non-Gaussian, and, possibly, the noise is non-Gaussian. An optimal detector for a Gaussian-mixture model of the parameter prior distribution is derived. A general technique for design of suboptimal Bayesian detectors with arbitrary prior distributions of the unknown parameter by means of Gaussian-mixture approximations is proposed. The technique is illustrated over an example with Rayleigh prior distribution, and the performance of the designed detector is evaluated by Monte Carlo simulation.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"43 1","pages":"286-289"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of Bayesian signal detectors using Gaussian-mixture models\",\"authors\":\"V. Jilkov, Jaipal R. Katkuri, Hari K. Nandiraju\",\"doi\":\"10.1109/SSST.2010.5442823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressed is the problem of Bayesian detector design for a signal with unknown parameters when the prior distribution of the parameters is non-Gaussian, and, possibly, the noise is non-Gaussian. An optimal detector for a Gaussian-mixture model of the parameter prior distribution is derived. A general technique for design of suboptimal Bayesian detectors with arbitrary prior distributions of the unknown parameter by means of Gaussian-mixture approximations is proposed. The technique is illustrated over an example with Rayleigh prior distribution, and the performance of the designed detector is evaluated by Monte Carlo simulation.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"43 1\",\"pages\":\"286-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了未知参数信号的贝叶斯检测器设计问题,当参数的先验分布是非高斯分布时,噪声也可能是非高斯分布。推导了参数先验分布的高斯混合模型的最优检测器。提出了一种利用混合高斯近似设计未知参数任意先验分布的次优贝叶斯检测器的一般方法。通过一个瑞利先验分布的算例对该方法进行了说明,并通过蒙特卡罗仿真对所设计的检测器的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Bayesian signal detectors using Gaussian-mixture models
Addressed is the problem of Bayesian detector design for a signal with unknown parameters when the prior distribution of the parameters is non-Gaussian, and, possibly, the noise is non-Gaussian. An optimal detector for a Gaussian-mixture model of the parameter prior distribution is derived. A general technique for design of suboptimal Bayesian detectors with arbitrary prior distributions of the unknown parameter by means of Gaussian-mixture approximations is proposed. The technique is illustrated over an example with Rayleigh prior distribution, and the performance of the designed detector is evaluated by Monte Carlo simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信