砂岩三相酸化:油和水存在下演化CO2的定量分析

Sajjaat Muhemmed, H. Kumar, H. Nasr-El-Din
{"title":"砂岩三相酸化:油和水存在下演化CO2的定量分析","authors":"Sajjaat Muhemmed, H. Kumar, H. Nasr-El-Din","doi":"10.2118/194776-MS","DOIUrl":null,"url":null,"abstract":"\n The proposed paper presents a detailed study on evolving CO2 due to calcite mineral dissolution, and its ensuing activity during the matrix acidizing of sanstone reservoirs. Coreflood experiments were conducted in acidizing, and interpreted via simulation studies using a three-phase, two scale continuum model. Sensitivity studies were then performed on the calibrated simulation model. Acid injection was performed on 6 in.-length, 1.5 in.-diameter Bandera Brown sandstone cores of variable calcite content, using 15 wt% HCl single-phase coreflood experiments at high back pressures were conducted to calibrate and initially test the three-phase, two-scale continuum model. Experimentally measured rock-heterogeneity via computed tomography (CT) scans, relative-permeability and capillary pressures, oil-water interfacial tension and contact-angle parameters were inputs for three-phase, two-scale model-based history matching and sensitivity studies. The three-phase, two-scale continuum model was able to match all performed coreflood experiments with a good level of accuracy. The acid-calcite chemical reaction parameters were fixed in all cases to ensure consistency in analysis. Oil production was observed, with an average of 40% recovery of the residual oil in place at CO2 miscible pressures. CO2 miscibility in oil enhances swelling with time, which was seen as the main mechanism for oil production. A direct symmetry was observed between the oil recovery and average CO2 moles in oil. The recovery curve flattened once surrounding oil reached its full-saturation level with CO2. Reduction in oil-water interfacial-tension increased the recovery factor only by a slight margin, owing to dependency on evolved CO2 volume. Immiscible CO2 conditions yielded no residual oil recovery. The successful application of the three-phase, two-scale continuum model approach sets a new bar in the area of sandstone acidizing. The acid breakthrough criterion has been revised toward application in a three-phase environment. The potential of CO2, a by-product of acidizing, towards its contribution in swelling oil in the presence of a three-phase environment, and towards possible oil recovery in the event of flowing back a well.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Three-Phase Sandstone Acidizing: Quantification and Analysis of Evolved CO2 in the Presence of Oil and Water\",\"authors\":\"Sajjaat Muhemmed, H. Kumar, H. Nasr-El-Din\",\"doi\":\"10.2118/194776-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The proposed paper presents a detailed study on evolving CO2 due to calcite mineral dissolution, and its ensuing activity during the matrix acidizing of sanstone reservoirs. Coreflood experiments were conducted in acidizing, and interpreted via simulation studies using a three-phase, two scale continuum model. Sensitivity studies were then performed on the calibrated simulation model. Acid injection was performed on 6 in.-length, 1.5 in.-diameter Bandera Brown sandstone cores of variable calcite content, using 15 wt% HCl single-phase coreflood experiments at high back pressures were conducted to calibrate and initially test the three-phase, two-scale continuum model. Experimentally measured rock-heterogeneity via computed tomography (CT) scans, relative-permeability and capillary pressures, oil-water interfacial tension and contact-angle parameters were inputs for three-phase, two-scale model-based history matching and sensitivity studies. The three-phase, two-scale continuum model was able to match all performed coreflood experiments with a good level of accuracy. The acid-calcite chemical reaction parameters were fixed in all cases to ensure consistency in analysis. Oil production was observed, with an average of 40% recovery of the residual oil in place at CO2 miscible pressures. CO2 miscibility in oil enhances swelling with time, which was seen as the main mechanism for oil production. A direct symmetry was observed between the oil recovery and average CO2 moles in oil. The recovery curve flattened once surrounding oil reached its full-saturation level with CO2. Reduction in oil-water interfacial-tension increased the recovery factor only by a slight margin, owing to dependency on evolved CO2 volume. Immiscible CO2 conditions yielded no residual oil recovery. The successful application of the three-phase, two-scale continuum model approach sets a new bar in the area of sandstone acidizing. The acid breakthrough criterion has been revised toward application in a three-phase environment. The potential of CO2, a by-product of acidizing, towards its contribution in swelling oil in the presence of a three-phase environment, and towards possible oil recovery in the event of flowing back a well.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194776-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194776-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对砂岩储层基质酸化过程中方解石矿物溶解引起的CO2演化及其后续活动进行了详细研究。在酸化过程中进行了岩心驱油实验,并通过采用三相、双尺度连续模型的模拟研究进行了解释。然后对校准后的模拟模型进行敏感性研究。在6英寸进行了酸注入。-长度,1.5英寸。在高背压下,采用15wt % HCl进行单相岩心驱油实验,校准并初步测试了三相、双尺度连续体模型。通过计算机断层扫描(CT)实验测量的岩石非均质性、相对渗透率和毛管压力、油水界面张力和接触角参数是三相、基于两尺度模型的历史匹配和敏感性研究的输入。三相、双尺度连续模型能够以较高的精度匹配所有已进行的岩心驱油实验。酸-方解石的化学反应参数在所有情况下都是固定的,以确保分析的一致性。在CO2混相压力下,剩余油的平均采收率为40%。随着时间的推移,原油中CO2的混相作用增强了溶胀,这被认为是原油开采的主要机制。在石油采收率和平均二氧化碳摩尔数之间观察到直接的对称性。当周围的石油达到二氧化碳的饱和水平时,采收率曲线趋于平缓。油水界面张力的降低只会略微提高采收率,这主要取决于二氧化碳的体积变化。不混相的CO2条件下不产生剩余油采收率。三相双尺度连续模型方法的成功应用,为砂岩酸化领域开创了新的标杆。对酸突破标准进行了修订,以便在三相环境中应用。作为酸化过程的副产品,二氧化碳在三相环境下对原油膨胀的潜在作用,以及在回井时对原油采收率的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Phase Sandstone Acidizing: Quantification and Analysis of Evolved CO2 in the Presence of Oil and Water
The proposed paper presents a detailed study on evolving CO2 due to calcite mineral dissolution, and its ensuing activity during the matrix acidizing of sanstone reservoirs. Coreflood experiments were conducted in acidizing, and interpreted via simulation studies using a three-phase, two scale continuum model. Sensitivity studies were then performed on the calibrated simulation model. Acid injection was performed on 6 in.-length, 1.5 in.-diameter Bandera Brown sandstone cores of variable calcite content, using 15 wt% HCl single-phase coreflood experiments at high back pressures were conducted to calibrate and initially test the three-phase, two-scale continuum model. Experimentally measured rock-heterogeneity via computed tomography (CT) scans, relative-permeability and capillary pressures, oil-water interfacial tension and contact-angle parameters were inputs for three-phase, two-scale model-based history matching and sensitivity studies. The three-phase, two-scale continuum model was able to match all performed coreflood experiments with a good level of accuracy. The acid-calcite chemical reaction parameters were fixed in all cases to ensure consistency in analysis. Oil production was observed, with an average of 40% recovery of the residual oil in place at CO2 miscible pressures. CO2 miscibility in oil enhances swelling with time, which was seen as the main mechanism for oil production. A direct symmetry was observed between the oil recovery and average CO2 moles in oil. The recovery curve flattened once surrounding oil reached its full-saturation level with CO2. Reduction in oil-water interfacial-tension increased the recovery factor only by a slight margin, owing to dependency on evolved CO2 volume. Immiscible CO2 conditions yielded no residual oil recovery. The successful application of the three-phase, two-scale continuum model approach sets a new bar in the area of sandstone acidizing. The acid breakthrough criterion has been revised toward application in a three-phase environment. The potential of CO2, a by-product of acidizing, towards its contribution in swelling oil in the presence of a three-phase environment, and towards possible oil recovery in the event of flowing back a well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信