{"title":"𝕃p带跳跃的反射后向随机微分方程的解","authors":"Song Yao","doi":"10.1051/ps/2020026","DOIUrl":null,"url":null,"abstract":"Given p ∈ (1, 2), we study 𝕃p -solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y , z , u ). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p -integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g -evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g -evaluation of reward 𝔏.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝕃p solutions of reflected backward stochastic differential equations with jumps\",\"authors\":\"Song Yao\",\"doi\":\"10.1051/ps/2020026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given p ∈ (1, 2), we study 𝕃p -solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y , z , u ). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p -integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g -evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g -evaluation of reward 𝔏.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2020026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
𝕃p solutions of reflected backward stochastic differential equations with jumps
Given p ∈ (1, 2), we study 𝕃p -solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y , z , u ). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p -integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g -evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g -evaluation of reward 𝔏.