{"title":"利用相敏FMCW雷达对冰原钻孔进行地质监测的超高频应答器的研制","authors":"A. Amiri, P. Brennan, L. B. Lok","doi":"10.1109/MWSYM.2017.8058982","DOIUrl":null,"url":null,"abstract":"This paper presents an active UHF transponder designed for geological monitoring of boreholes drilled through ice sheets. It forms part of a phase-sensitive frequency modulated continuous wave (FMCW) radar system to measure the horizontal position of a borehole with depth. To distinguish the transponder response from stationary clutter, the transponder modulates the received signal before re-transmission to the surface radars. The transponder operates from 292 to 492 MHz with a gain around 18 dB. The transponder employs two novel antennas optimized for deployment within a 15 cm diameter borehole. The simulation and indoor laboratory measurement results of the transponder design are presented.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"53 1","pages":"1746-1749"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a UHF transponder for geological monitoring of boreholes drilled through ice sheets using phase-sensitive FMCW radar\",\"authors\":\"A. Amiri, P. Brennan, L. B. Lok\",\"doi\":\"10.1109/MWSYM.2017.8058982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an active UHF transponder designed for geological monitoring of boreholes drilled through ice sheets. It forms part of a phase-sensitive frequency modulated continuous wave (FMCW) radar system to measure the horizontal position of a borehole with depth. To distinguish the transponder response from stationary clutter, the transponder modulates the received signal before re-transmission to the surface radars. The transponder operates from 292 to 492 MHz with a gain around 18 dB. The transponder employs two novel antennas optimized for deployment within a 15 cm diameter borehole. The simulation and indoor laboratory measurement results of the transponder design are presented.\",\"PeriodicalId\":6481,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"53 1\",\"pages\":\"1746-1749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2017.8058982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a UHF transponder for geological monitoring of boreholes drilled through ice sheets using phase-sensitive FMCW radar
This paper presents an active UHF transponder designed for geological monitoring of boreholes drilled through ice sheets. It forms part of a phase-sensitive frequency modulated continuous wave (FMCW) radar system to measure the horizontal position of a borehole with depth. To distinguish the transponder response from stationary clutter, the transponder modulates the received signal before re-transmission to the surface radars. The transponder operates from 292 to 492 MHz with a gain around 18 dB. The transponder employs two novel antennas optimized for deployment within a 15 cm diameter borehole. The simulation and indoor laboratory measurement results of the transponder design are presented.