基于Radon线检测器和形态重建的无监督自动视网膜血管分割

M. Tavakoli, A. Mehdizadeh, Reza Pourreza-Shahri, J. Dehmeshki
{"title":"基于Radon线检测器和形态重建的无监督自动视网膜血管分割","authors":"M. Tavakoli, A. Mehdizadeh, Reza Pourreza-Shahri, J. Dehmeshki","doi":"10.1049/IPR2.12119","DOIUrl":null,"url":null,"abstract":"Retinal blood vessel segmentation and analysis is critical for the computer-aided diagnosis of different diseases such as diabetic retinopathy. This study presents an automated unsupervised method for segmenting the retinal vasculature based on hybrid methods. The algorithm initially applies a preprocessing step using morphological operators to enhance the vessel tree structure against a non-uniform image background. The main processing applies the Radon transform to overlapping windows, followed by vessel validation, vessel refinement and vessel reconstruction to achieve the final segmentation. The method was tested on three publicly available datasets and a local database comprising a total of 188 images. Segmentation performance was evaluated using three measures: accuracy, receiver operating characteristic (ROC) analysis, and the structural similarity index. ROC analysis resulted in area under curve values of 97.39%, 97.01%, and 97.12%, for the DRIVE, STARE, and CHASE-DB1, respectively. Also, the results of accuracy were 0.9688, 0.9646, and 0.9475 for the same datasets. Finally, the average values of structural similarity index were computed for all four datasets, with average values of 0.9650 (DRIVE), 0.9641 (STARE), and 0.9625 (CHASE-DB1). These results compare with the best published results to date, exceeding their performance for several of the datasets; similar performance is found using accuracy.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"31 1","pages":"1484-1498"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction\",\"authors\":\"M. Tavakoli, A. Mehdizadeh, Reza Pourreza-Shahri, J. Dehmeshki\",\"doi\":\"10.1049/IPR2.12119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal blood vessel segmentation and analysis is critical for the computer-aided diagnosis of different diseases such as diabetic retinopathy. This study presents an automated unsupervised method for segmenting the retinal vasculature based on hybrid methods. The algorithm initially applies a preprocessing step using morphological operators to enhance the vessel tree structure against a non-uniform image background. The main processing applies the Radon transform to overlapping windows, followed by vessel validation, vessel refinement and vessel reconstruction to achieve the final segmentation. The method was tested on three publicly available datasets and a local database comprising a total of 188 images. Segmentation performance was evaluated using three measures: accuracy, receiver operating characteristic (ROC) analysis, and the structural similarity index. ROC analysis resulted in area under curve values of 97.39%, 97.01%, and 97.12%, for the DRIVE, STARE, and CHASE-DB1, respectively. Also, the results of accuracy were 0.9688, 0.9646, and 0.9475 for the same datasets. Finally, the average values of structural similarity index were computed for all four datasets, with average values of 0.9650 (DRIVE), 0.9641 (STARE), and 0.9625 (CHASE-DB1). These results compare with the best published results to date, exceeding their performance for several of the datasets; similar performance is found using accuracy.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"31 1\",\"pages\":\"1484-1498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IPR2.12119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

视网膜血管的分割与分析对于糖尿病视网膜病变等不同疾病的计算机辅助诊断至关重要。提出了一种基于混合方法的视网膜血管自动无监督分割方法。该算法首先应用形态学算子预处理步骤来增强非均匀图像背景下的血管树结构。主要处理是对重叠窗口进行Radon变换,然后进行血管验证、血管细化和血管重建,最终实现分割。该方法在三个公开可用的数据集和一个包含188张图像的本地数据库上进行了测试。使用三个指标来评估分割性能:准确性、受试者工作特征(ROC)分析和结构相似性指数。ROC分析结果显示,DRIVE、STARE和CHASE-DB1的曲线下面积分别为97.39%、97.01%和97.12%。同一数据集的准确率分别为0.9688、0.9646和0.9475。最后计算4个数据集的结构相似度指数平均值,分别为0.9650 (DRIVE)、0.9641 (STARE)和0.9625 (CHASE-DB1)。这些结果与迄今为止发表的最佳结果进行了比较,在一些数据集上超过了它们的表现;使用精度可以发现类似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction
Retinal blood vessel segmentation and analysis is critical for the computer-aided diagnosis of different diseases such as diabetic retinopathy. This study presents an automated unsupervised method for segmenting the retinal vasculature based on hybrid methods. The algorithm initially applies a preprocessing step using morphological operators to enhance the vessel tree structure against a non-uniform image background. The main processing applies the Radon transform to overlapping windows, followed by vessel validation, vessel refinement and vessel reconstruction to achieve the final segmentation. The method was tested on three publicly available datasets and a local database comprising a total of 188 images. Segmentation performance was evaluated using three measures: accuracy, receiver operating characteristic (ROC) analysis, and the structural similarity index. ROC analysis resulted in area under curve values of 97.39%, 97.01%, and 97.12%, for the DRIVE, STARE, and CHASE-DB1, respectively. Also, the results of accuracy were 0.9688, 0.9646, and 0.9475 for the same datasets. Finally, the average values of structural similarity index were computed for all four datasets, with average values of 0.9650 (DRIVE), 0.9641 (STARE), and 0.9625 (CHASE-DB1). These results compare with the best published results to date, exceeding their performance for several of the datasets; similar performance is found using accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信