基于图像的视觉伺服实时特征深度估计

Xiangfei Li, Huan Zhao, H. Ding
{"title":"基于图像的视觉伺服实时特征深度估计","authors":"Xiangfei Li, Huan Zhao, H. Ding","doi":"10.1109/IROS.2018.8593402","DOIUrl":null,"url":null,"abstract":"Without the 3-D geometry of the target and robust to camera calibration error, image-based visual servoing schemes have gained a lot of attention. However, the depth of the selected feature, which is involved in the interaction matrix relating the time variation of the feature to the velocity twist of the camera, must be estimated correctly to guarantee the stability of the controller. To this end, this paper proposes a new nonlinear reduced-order observer structure to recover the feature depth in real time. Compared with the existing works, the proposed observer has a global asymptotic convergence property and fast convergence rate, and the convergence rate can be easily adjusted only using a single gain parameter. In addition, the proposed observer has a less restrictive observability condition and stronger robustness to noisy measurements. Extensive comparative numerical simulations are carried out to validate the effectiveness of the proposed depth observer.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"7314-7320"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Feature Depth Estimation for Image-Based Visual ServOing\",\"authors\":\"Xiangfei Li, Huan Zhao, H. Ding\",\"doi\":\"10.1109/IROS.2018.8593402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without the 3-D geometry of the target and robust to camera calibration error, image-based visual servoing schemes have gained a lot of attention. However, the depth of the selected feature, which is involved in the interaction matrix relating the time variation of the feature to the velocity twist of the camera, must be estimated correctly to guarantee the stability of the controller. To this end, this paper proposes a new nonlinear reduced-order observer structure to recover the feature depth in real time. Compared with the existing works, the proposed observer has a global asymptotic convergence property and fast convergence rate, and the convergence rate can be easily adjusted only using a single gain parameter. In addition, the proposed observer has a less restrictive observability condition and stronger robustness to noisy measurements. Extensive comparative numerical simulations are carried out to validate the effectiveness of the proposed depth observer.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"1 1\",\"pages\":\"7314-7320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于图像的视觉伺服方案由于不具备目标的三维几何特性和对摄像机标定误差的鲁棒性而受到广泛关注。然而,为了保证控制器的稳定性,必须正确估计所选特征的深度,这涉及到特征的时间变化与相机速度扭曲的交互矩阵。为此,本文提出了一种新的非线性降阶观测器结构来实时恢复特征深度。与现有的观测器相比,该观测器具有全局渐近收敛的特性,收敛速度快,且只需使用单个增益参数即可轻松调整收敛速度。此外,该观测器具有较少的可观测性条件约束,对噪声测量具有较强的鲁棒性。为了验证所提出的深度观测器的有效性,进行了大量的对比数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Feature Depth Estimation for Image-Based Visual ServOing
Without the 3-D geometry of the target and robust to camera calibration error, image-based visual servoing schemes have gained a lot of attention. However, the depth of the selected feature, which is involved in the interaction matrix relating the time variation of the feature to the velocity twist of the camera, must be estimated correctly to guarantee the stability of the controller. To this end, this paper proposes a new nonlinear reduced-order observer structure to recover the feature depth in real time. Compared with the existing works, the proposed observer has a global asymptotic convergence property and fast convergence rate, and the convergence rate can be easily adjusted only using a single gain parameter. In addition, the proposed observer has a less restrictive observability condition and stronger robustness to noisy measurements. Extensive comparative numerical simulations are carried out to validate the effectiveness of the proposed depth observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信