{"title":"胶体分散体系流变学","authors":"Takayoshi Matsumoto","doi":"10.1678/RHEOLOGY.32.3","DOIUrl":null,"url":null,"abstract":"Rheological properties of various colloidal disperse systems were studied in the wide view of linear and non-linear viscoelasticity. The colloidal disperse systems show a unique relaxation mechanism in relatively long-time scale region, which is due to heterogeneity of the system. The disperse systems of fibrous particles show extremely high viscosity and large elastic modulus in comparison with that of the spherical particles.","PeriodicalId":17434,"journal":{"name":"Journal of the Society of Rheology, Japan","volume":"2 1","pages":"3-9"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rheology of Colloidal Disperse Systems\",\"authors\":\"Takayoshi Matsumoto\",\"doi\":\"10.1678/RHEOLOGY.32.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rheological properties of various colloidal disperse systems were studied in the wide view of linear and non-linear viscoelasticity. The colloidal disperse systems show a unique relaxation mechanism in relatively long-time scale region, which is due to heterogeneity of the system. The disperse systems of fibrous particles show extremely high viscosity and large elastic modulus in comparison with that of the spherical particles.\",\"PeriodicalId\":17434,\"journal\":{\"name\":\"Journal of the Society of Rheology, Japan\",\"volume\":\"2 1\",\"pages\":\"3-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society of Rheology, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1678/RHEOLOGY.32.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society of Rheology, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1678/RHEOLOGY.32.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rheological properties of various colloidal disperse systems were studied in the wide view of linear and non-linear viscoelasticity. The colloidal disperse systems show a unique relaxation mechanism in relatively long-time scale region, which is due to heterogeneity of the system. The disperse systems of fibrous particles show extremely high viscosity and large elastic modulus in comparison with that of the spherical particles.