Jinpeng Li, Juan Du, Aiping Deng, Ziyang Chen, Yusong Guo, Zhongduo Wang
{"title":"四种鱼类模型中央角膜厚度的比较分析。","authors":"Jinpeng Li, Juan Du, Aiping Deng, Ziyang Chen, Yusong Guo, Zhongduo Wang","doi":"10.1089/zeb.2022.0016","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the left-right asymmetry of vertebrate eyes, this study measured the central corneal thickness (CCT) of <i>Oryzias curvinotus</i>, <i>Oryzias melastigma</i>, <i>Oryzias latipes</i>, and zebrafish with optical coherence tomography. The results showed that the CCTs were significant differences among different species and groups, even between the right and left eyes of each fish. The values of the CCTs (mean ± SD, μm) for the four species were 104.71 ± 14.49, 61.88 ± 8.63, 64.76 ± 10.36 and 56.96 ± 10.48, respectively. Moreover, comparing the two wild groups of <i>O. curvinotus</i> from Sanya on N18° and Gaoqiao on N21°, the CCT value for the low-latitude group was 104.71 ± 14.49 μm, greater than the high latitude group 76.13 ± 5.70 μm significantly (<i>t</i>-test, <i>p</i> = 0.0001). Lastly, the paired Student's <i>t</i>-test revealed that significant CCT differences existed between the left and right eye for all four species and groups, of which zebrafish and <i>O. melastigma</i> were belonging to the left thicker type in contrast to the others. This study laid a foundation for understanding the causes of the difference in CCT, and also provided possible fish models for human researches on keratomileusis, glaucoma, and other corneal diseases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Central Corneal Thickness in Four Fish Models.\",\"authors\":\"Jinpeng Li, Juan Du, Aiping Deng, Ziyang Chen, Yusong Guo, Zhongduo Wang\",\"doi\":\"10.1089/zeb.2022.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To understand the left-right asymmetry of vertebrate eyes, this study measured the central corneal thickness (CCT) of <i>Oryzias curvinotus</i>, <i>Oryzias melastigma</i>, <i>Oryzias latipes</i>, and zebrafish with optical coherence tomography. The results showed that the CCTs were significant differences among different species and groups, even between the right and left eyes of each fish. The values of the CCTs (mean ± SD, μm) for the four species were 104.71 ± 14.49, 61.88 ± 8.63, 64.76 ± 10.36 and 56.96 ± 10.48, respectively. Moreover, comparing the two wild groups of <i>O. curvinotus</i> from Sanya on N18° and Gaoqiao on N21°, the CCT value for the low-latitude group was 104.71 ± 14.49 μm, greater than the high latitude group 76.13 ± 5.70 μm significantly (<i>t</i>-test, <i>p</i> = 0.0001). Lastly, the paired Student's <i>t</i>-test revealed that significant CCT differences existed between the left and right eye for all four species and groups, of which zebrafish and <i>O. melastigma</i> were belonging to the left thicker type in contrast to the others. This study laid a foundation for understanding the causes of the difference in CCT, and also provided possible fish models for human researches on keratomileusis, glaucoma, and other corneal diseases.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2022.0016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative Analysis of Central Corneal Thickness in Four Fish Models.
To understand the left-right asymmetry of vertebrate eyes, this study measured the central corneal thickness (CCT) of Oryzias curvinotus, Oryzias melastigma, Oryzias latipes, and zebrafish with optical coherence tomography. The results showed that the CCTs were significant differences among different species and groups, even between the right and left eyes of each fish. The values of the CCTs (mean ± SD, μm) for the four species were 104.71 ± 14.49, 61.88 ± 8.63, 64.76 ± 10.36 and 56.96 ± 10.48, respectively. Moreover, comparing the two wild groups of O. curvinotus from Sanya on N18° and Gaoqiao on N21°, the CCT value for the low-latitude group was 104.71 ± 14.49 μm, greater than the high latitude group 76.13 ± 5.70 μm significantly (t-test, p = 0.0001). Lastly, the paired Student's t-test revealed that significant CCT differences existed between the left and right eye for all four species and groups, of which zebrafish and O. melastigma were belonging to the left thicker type in contrast to the others. This study laid a foundation for understanding the causes of the difference in CCT, and also provided possible fish models for human researches on keratomileusis, glaucoma, and other corneal diseases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.