反应性欧拉方程的严格凸熵和熵稳定格式

Weifeng Zhao
{"title":"反应性欧拉方程的严格凸熵和熵稳定格式","authors":"Weifeng Zhao","doi":"10.1090/mcom/3721","DOIUrl":null,"url":null,"abstract":"This paper presents entropy analysis and entropy stable (ES) finite difference schemes for the reactive Euler equations with chemical reactions. For such equations we point out that the thermodynamic entropy is no longer strictly convex. To address this issue, we propose a strictly convex entropy function by adding an extra term to the thermodynamic entropy. Thanks to the strict convexity of the proposed entropy, the Roe-type dissipation operator in terms of the entropy variables can be formulated. Furthermore, we construct two sets of second-order entropy preserving (EP) numerical fluxes for the reactive Euler equations. Based on the EP fluxes and the Roe-type dissipation operators, high-order EP/ES fluxes are derived. Numerical experiments validate the designed accuracy and good performance of our schemes for smooth and discontinuous initial value problems. The entropy decrease of ES schemes is verified as well.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"81 1","pages":"735-760"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strictly convex entropy and entropy stable schemes for reactive Euler equations\",\"authors\":\"Weifeng Zhao\",\"doi\":\"10.1090/mcom/3721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents entropy analysis and entropy stable (ES) finite difference schemes for the reactive Euler equations with chemical reactions. For such equations we point out that the thermodynamic entropy is no longer strictly convex. To address this issue, we propose a strictly convex entropy function by adding an extra term to the thermodynamic entropy. Thanks to the strict convexity of the proposed entropy, the Roe-type dissipation operator in terms of the entropy variables can be formulated. Furthermore, we construct two sets of second-order entropy preserving (EP) numerical fluxes for the reactive Euler equations. Based on the EP fluxes and the Roe-type dissipation operators, high-order EP/ES fluxes are derived. Numerical experiments validate the designed accuracy and good performance of our schemes for smooth and discontinuous initial value problems. The entropy decrease of ES schemes is verified as well.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"81 1\",\"pages\":\"735-760\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了含化学反应的反应欧拉方程的熵分析和熵稳定有限差分格式。对于这样的方程,我们指出热力学熵不再是严格凸的。为了解决这个问题,我们提出了一个严格的凸熵函数,在热力学熵中增加了一个额外的项。由于所提出的熵的严格凸性,可以用熵变量表示的roe型耗散算子。此外,我们构造了两组二阶保持熵(EP)的反应性欧拉方程数值通量。基于EP通量和roe型耗散算符,导出了高阶EP/ES通量。数值实验验证了所设计的方法对光滑和不连续初值问题的精度和良好的性能。验证了ES方案的熵减小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strictly convex entropy and entropy stable schemes for reactive Euler equations
This paper presents entropy analysis and entropy stable (ES) finite difference schemes for the reactive Euler equations with chemical reactions. For such equations we point out that the thermodynamic entropy is no longer strictly convex. To address this issue, we propose a strictly convex entropy function by adding an extra term to the thermodynamic entropy. Thanks to the strict convexity of the proposed entropy, the Roe-type dissipation operator in terms of the entropy variables can be formulated. Furthermore, we construct two sets of second-order entropy preserving (EP) numerical fluxes for the reactive Euler equations. Based on the EP fluxes and the Roe-type dissipation operators, high-order EP/ES fluxes are derived. Numerical experiments validate the designed accuracy and good performance of our schemes for smooth and discontinuous initial value problems. The entropy decrease of ES schemes is verified as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信