自闭症谱系障碍挑战行为的聚类分析

Elizabeth Stevens, Abigail Atchison, Laura Stevens, Esther Hong, D. Granpeesheh, Dennis R. Dixon, Erik J. Linstead
{"title":"自闭症谱系障碍挑战行为的聚类分析","authors":"Elizabeth Stevens, Abigail Atchison, Laura Stevens, Esther Hong, D. Granpeesheh, Dennis R. Dixon, Erik J. Linstead","doi":"10.1109/ICMLA.2017.00-85","DOIUrl":null,"url":null,"abstract":"We apply cluster analysis to a sample of 2,116 children with Autism Spectrum Disorder in order to identify patterns of challenging behaviors observed in home and centerbased clinical settings. The largest study of this type to date, and the first to employ machine learning, our results indicate that while the presence of multiple challenging behaviors is common, in most cases a dominant behavior emerges. Furthermore, the trend is also observed when we train our cluster models on the male and female samples separately. This work provides a basis for future studies to understand the relationship of challenging behavior profiles to learning outcomes, with the ultimate goal of providing personalized therapeutic interventions with maximum efficacy and minimum time and cost.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"26 1","pages":"661-666"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A Cluster Analysis of Challenging Behaviors in Autism Spectrum Disorder\",\"authors\":\"Elizabeth Stevens, Abigail Atchison, Laura Stevens, Esther Hong, D. Granpeesheh, Dennis R. Dixon, Erik J. Linstead\",\"doi\":\"10.1109/ICMLA.2017.00-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply cluster analysis to a sample of 2,116 children with Autism Spectrum Disorder in order to identify patterns of challenging behaviors observed in home and centerbased clinical settings. The largest study of this type to date, and the first to employ machine learning, our results indicate that while the presence of multiple challenging behaviors is common, in most cases a dominant behavior emerges. Furthermore, the trend is also observed when we train our cluster models on the male and female samples separately. This work provides a basis for future studies to understand the relationship of challenging behavior profiles to learning outcomes, with the ultimate goal of providing personalized therapeutic interventions with maximum efficacy and minimum time and cost.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"26 1\",\"pages\":\"661-666\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们对2116名自闭症谱系障碍儿童的样本进行了聚类分析,以确定在家庭和中心临床环境中观察到的具有挑战性的行为模式。这是迄今为止这类研究中规模最大的,也是第一个使用机器学习的研究,我们的研究结果表明,虽然多种具有挑战性的行为很常见,但在大多数情况下,会出现一种主导行为。此外,当我们分别在男性和女性样本上训练聚类模型时,也观察到这种趋势。这项工作为未来的研究提供了基础,以了解挑战性行为特征与学习结果的关系,最终目标是提供最有效、最短时间和成本的个性化治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cluster Analysis of Challenging Behaviors in Autism Spectrum Disorder
We apply cluster analysis to a sample of 2,116 children with Autism Spectrum Disorder in order to identify patterns of challenging behaviors observed in home and centerbased clinical settings. The largest study of this type to date, and the first to employ machine learning, our results indicate that while the presence of multiple challenging behaviors is common, in most cases a dominant behavior emerges. Furthermore, the trend is also observed when we train our cluster models on the male and female samples separately. This work provides a basis for future studies to understand the relationship of challenging behavior profiles to learning outcomes, with the ultimate goal of providing personalized therapeutic interventions with maximum efficacy and minimum time and cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信