{"title":"关联图:在高维对应分析双图中可视化特定集群的关联","authors":"E. Gralinska, Martin Vingron","doi":"10.1093/jrsssc/qlad039","DOIUrl":null,"url":null,"abstract":"\n In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many observations (rows) for a set of variables (columns). While projection methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question of which observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of variables. We demonstrate our method on two small data sets and then use it to study a challenging genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those observations which characterise a cluster of variables.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Association Plots: visualizing cluster-specific associations in high-dimensional correspondence analysis biplots\",\"authors\":\"E. Gralinska, Martin Vingron\",\"doi\":\"10.1093/jrsssc/qlad039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many observations (rows) for a set of variables (columns). While projection methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question of which observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of variables. We demonstrate our method on two small data sets and then use it to study a challenging genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those observations which characterise a cluster of variables.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Association Plots: visualizing cluster-specific associations in high-dimensional correspondence analysis biplots
In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many observations (rows) for a set of variables (columns). While projection methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question of which observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of variables. We demonstrate our method on two small data sets and then use it to study a challenging genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those observations which characterise a cluster of variables.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.