{"title":"棱镜晶体上同调的有限性和对偶性","authors":"Yichao Tian","doi":"10.1515/crelle-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract Let ( A , I ) {(A,I)} be a bounded prism, and let X be a smooth p-adic formal scheme over Spf ( A / I ) {\\operatorname{Spf}(A/I)} . We consider the notion of crystals on Bhatt–Scholze’s prismatic site ( X / A ) Δ Δ {(X/A)_{{\\kern-0.284528pt{\\Delta}\\kern-5.975079pt{\\Delta}}}} of X relative to A. We prove that if X is proper over Spf ( A / I ) {\\operatorname{Spf}(A/I)} of relative dimension n, then the cohomology of a prismatic crystal is a perfect complex of A-modules with tor-amplitude in degrees [ 0 , 2 n ] {[0,2n]} . We also establish a Poincaré duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of ( X / A ) Δ Δ {(X/A)_{{\\kern-0.284528pt{\\Delta}\\kern-5.975079pt{\\Delta}}}} . The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"42 1","pages":"217 - 257"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Finiteness and duality for the cohomology of prismatic crystals\",\"authors\":\"Yichao Tian\",\"doi\":\"10.1515/crelle-2023-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let ( A , I ) {(A,I)} be a bounded prism, and let X be a smooth p-adic formal scheme over Spf ( A / I ) {\\\\operatorname{Spf}(A/I)} . We consider the notion of crystals on Bhatt–Scholze’s prismatic site ( X / A ) Δ Δ {(X/A)_{{\\\\kern-0.284528pt{\\\\Delta}\\\\kern-5.975079pt{\\\\Delta}}}} of X relative to A. We prove that if X is proper over Spf ( A / I ) {\\\\operatorname{Spf}(A/I)} of relative dimension n, then the cohomology of a prismatic crystal is a perfect complex of A-modules with tor-amplitude in degrees [ 0 , 2 n ] {[0,2n]} . We also establish a Poincaré duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of ( X / A ) Δ Δ {(X/A)_{{\\\\kern-0.284528pt{\\\\Delta}\\\\kern-5.975079pt{\\\\Delta}}}} . The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"42 1\",\"pages\":\"217 - 257\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0032\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finiteness and duality for the cohomology of prismatic crystals
Abstract Let ( A , I ) {(A,I)} be a bounded prism, and let X be a smooth p-adic formal scheme over Spf ( A / I ) {\operatorname{Spf}(A/I)} . We consider the notion of crystals on Bhatt–Scholze’s prismatic site ( X / A ) Δ Δ {(X/A)_{{\kern-0.284528pt{\Delta}\kern-5.975079pt{\Delta}}}} of X relative to A. We prove that if X is proper over Spf ( A / I ) {\operatorname{Spf}(A/I)} of relative dimension n, then the cohomology of a prismatic crystal is a perfect complex of A-modules with tor-amplitude in degrees [ 0 , 2 n ] {[0,2n]} . We also establish a Poincaré duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of ( X / A ) Δ Δ {(X/A)_{{\kern-0.284528pt{\Delta}\kern-5.975079pt{\Delta}}}} . The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.