基于群搜索优化算法的最优模糊最小-最大神经网络医疗数据分类

Q4 Business, Management and Accounting
L. J. Rubini, P. Eswaran
{"title":"基于群搜索优化算法的最优模糊最小-最大神经网络医疗数据分类","authors":"L. J. Rubini, P. Eswaran","doi":"10.1504/IJMNDI.2017.10010143","DOIUrl":null,"url":null,"abstract":"Several techniques were applied to healthcare datasets for the prediction of future healthcare utilisation such as predicting individual expenditures and disease risks for patients. In order to achieve promising results in medical data classification, we have planned to utilise orthogonal local preserving projection and optimal classifier. Initially, the pre-processing will be applied to extract useful data and to convert suitable samples from raw medical datasets. Feature dimension reduction method will be applied to reduce the features' space without losing the accuracy of prediction. Here, orthogonal local preserving projection (OLPP) will be used. Once the feature reduction is formed, the prediction will be carried out based on the optimal classifier. In the optimal classifier, group search optimiser algorithm will be used for fuzzy min-max neural network. Here, the experimentation is done by using various datasets from UCI machine learning repository.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"1 1","pages":"140"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal fuzzy min-max neural network for medical data classification using group search optimiser algorithm\",\"authors\":\"L. J. Rubini, P. Eswaran\",\"doi\":\"10.1504/IJMNDI.2017.10010143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several techniques were applied to healthcare datasets for the prediction of future healthcare utilisation such as predicting individual expenditures and disease risks for patients. In order to achieve promising results in medical data classification, we have planned to utilise orthogonal local preserving projection and optimal classifier. Initially, the pre-processing will be applied to extract useful data and to convert suitable samples from raw medical datasets. Feature dimension reduction method will be applied to reduce the features' space without losing the accuracy of prediction. Here, orthogonal local preserving projection (OLPP) will be used. Once the feature reduction is formed, the prediction will be carried out based on the optimal classifier. In the optimal classifier, group search optimiser algorithm will be used for fuzzy min-max neural network. Here, the experimentation is done by using various datasets from UCI machine learning repository.\",\"PeriodicalId\":35022,\"journal\":{\"name\":\"International Journal of Mobile Network Design and Innovation\",\"volume\":\"1 1\",\"pages\":\"140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Network Design and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMNDI.2017.10010143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMNDI.2017.10010143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 4

摘要

将几种技术应用于医疗保健数据集,以预测未来的医疗保健利用情况,例如预测患者的个人支出和疾病风险。为了在医疗数据分类中取得令人满意的结果,我们计划利用正交局部保持投影和最优分类器。首先,预处理将用于提取有用的数据,并从原始医疗数据集中转换合适的样本。在不影响预测精度的前提下,采用特征降维方法减少特征空间。这里将使用正交局部保持投影(OLPP)。特征约简形成后,根据最优分类器进行预测。在最优分类器中,对模糊最小-最大神经网络采用群搜索优化算法。在这里,实验是通过使用UCI机器学习存储库中的各种数据集来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal fuzzy min-max neural network for medical data classification using group search optimiser algorithm
Several techniques were applied to healthcare datasets for the prediction of future healthcare utilisation such as predicting individual expenditures and disease risks for patients. In order to achieve promising results in medical data classification, we have planned to utilise orthogonal local preserving projection and optimal classifier. Initially, the pre-processing will be applied to extract useful data and to convert suitable samples from raw medical datasets. Feature dimension reduction method will be applied to reduce the features' space without losing the accuracy of prediction. Here, orthogonal local preserving projection (OLPP) will be used. Once the feature reduction is formed, the prediction will be carried out based on the optimal classifier. In the optimal classifier, group search optimiser algorithm will be used for fuzzy min-max neural network. Here, the experimentation is done by using various datasets from UCI machine learning repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mobile Network Design and Innovation
International Journal of Mobile Network Design and Innovation Business, Management and Accounting-Management Information Systems
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信