Chang Eun Lee, T. Park, Seung-Hyeon Mun, Youngdoo Jung, Seokyeong Lee, Jihye Jang, D. Ryu, Cheolmin Park
{"title":"低功率E -开关嵌段共聚物结构彩色显示器与有机水凝胶湿度控制器","authors":"Chang Eun Lee, T. Park, Seung-Hyeon Mun, Youngdoo Jung, Seokyeong Lee, Jihye Jang, D. Ryu, Cheolmin Park","doi":"10.1002/admt.202200385","DOIUrl":null,"url":null,"abstract":"Soft‐solid photonic crystals (PCs) based on periodically ordered block copolymer (BCP) nanostructures demonstrate stimuli‐adaptive structural colors (SCs) and desirable mechanical properties suitable for reflective‐mode electric‐switching (E‐switching) displays. However, the low electrochemical stability and humidity‐dependent E‐switching performance of hygroscopic ionic salts, often employed for E‐field‐adaptive structural alteration, limit their applications. In this study, a low‐powered capacitive E‐switching BCP SC display with an organohydrogel (OH) humidity controller is proposed, where a bilayer of a BCP and a polymer blend with hygroscopic E‐field‐adaptive ionic salts is sandwiched between Au electrodes. The display reliably exhibits reversible full‐color E‐switching (100 on/off cycles) at operating voltages of +2.5 to −2 V within the ionic salts’ electrochemical window at ≈50% humidity. A patchable and reusable OH serves as a water reservoir (with optimized geometries and dimensions) to improve the display's humidity tolerance, providing a target humidity (≈50%). The proposed display performs at ambient humidity lower than 60% for over 10 days because of the long water retention and mechanical integrity properties of OH. Additionally, the topologically micropatterned BCP PC allows lateral diffusion of ionic salts through the sides of the patterned domain under E‐field, facilitating E‐switching speeds of ≈30 s.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low‐Powered E‐Switching Block Copolymer Structural Color Display with Organohydrogel Humidity Controller\",\"authors\":\"Chang Eun Lee, T. Park, Seung-Hyeon Mun, Youngdoo Jung, Seokyeong Lee, Jihye Jang, D. Ryu, Cheolmin Park\",\"doi\":\"10.1002/admt.202200385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft‐solid photonic crystals (PCs) based on periodically ordered block copolymer (BCP) nanostructures demonstrate stimuli‐adaptive structural colors (SCs) and desirable mechanical properties suitable for reflective‐mode electric‐switching (E‐switching) displays. However, the low electrochemical stability and humidity‐dependent E‐switching performance of hygroscopic ionic salts, often employed for E‐field‐adaptive structural alteration, limit their applications. In this study, a low‐powered capacitive E‐switching BCP SC display with an organohydrogel (OH) humidity controller is proposed, where a bilayer of a BCP and a polymer blend with hygroscopic E‐field‐adaptive ionic salts is sandwiched between Au electrodes. The display reliably exhibits reversible full‐color E‐switching (100 on/off cycles) at operating voltages of +2.5 to −2 V within the ionic salts’ electrochemical window at ≈50% humidity. A patchable and reusable OH serves as a water reservoir (with optimized geometries and dimensions) to improve the display's humidity tolerance, providing a target humidity (≈50%). The proposed display performs at ambient humidity lower than 60% for over 10 days because of the long water retention and mechanical integrity properties of OH. Additionally, the topologically micropatterned BCP PC allows lateral diffusion of ionic salts through the sides of the patterned domain under E‐field, facilitating E‐switching speeds of ≈30 s.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low‐Powered E‐Switching Block Copolymer Structural Color Display with Organohydrogel Humidity Controller
Soft‐solid photonic crystals (PCs) based on periodically ordered block copolymer (BCP) nanostructures demonstrate stimuli‐adaptive structural colors (SCs) and desirable mechanical properties suitable for reflective‐mode electric‐switching (E‐switching) displays. However, the low electrochemical stability and humidity‐dependent E‐switching performance of hygroscopic ionic salts, often employed for E‐field‐adaptive structural alteration, limit their applications. In this study, a low‐powered capacitive E‐switching BCP SC display with an organohydrogel (OH) humidity controller is proposed, where a bilayer of a BCP and a polymer blend with hygroscopic E‐field‐adaptive ionic salts is sandwiched between Au electrodes. The display reliably exhibits reversible full‐color E‐switching (100 on/off cycles) at operating voltages of +2.5 to −2 V within the ionic salts’ electrochemical window at ≈50% humidity. A patchable and reusable OH serves as a water reservoir (with optimized geometries and dimensions) to improve the display's humidity tolerance, providing a target humidity (≈50%). The proposed display performs at ambient humidity lower than 60% for over 10 days because of the long water retention and mechanical integrity properties of OH. Additionally, the topologically micropatterned BCP PC allows lateral diffusion of ionic salts through the sides of the patterned domain under E‐field, facilitating E‐switching speeds of ≈30 s.