{"title":"具有阻尼和源项的p-Kirchhoff型双曲方程解的整体存在性和稳定性","authors":"Amar Ouaoua, A. Khaldi, M. Maouni","doi":"10.24193/subbmath.2022.4.11","DOIUrl":null,"url":null,"abstract":"\"In this paper, we consider a nonlinear $p-$Kirchhoff type hyperbolic equation with damping and source terms $$u_{tt}-M\\left( \\underset{\\Omega }{\\int }\\left\\vert \\nabla u\\right\\vert ^{p}dx\\right) \\Delta _{p}u+\\left\\vert u_{t}\\right\\vert ^{m-2}u_{t}=\\left\\vert u\\right\\vert ^{r-2}u.$$ Under suitable assumptions and positive initial energy, we prove the global existence of solution by using the potential energy and Nehari's functionals. Finally, the stability of equation is established based on Komornik's integral inequality.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and stability of solution for a p-Kirchhoff type hyperbolic equation with damping and source terms\",\"authors\":\"Amar Ouaoua, A. Khaldi, M. Maouni\",\"doi\":\"10.24193/subbmath.2022.4.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we consider a nonlinear $p-$Kirchhoff type hyperbolic equation with damping and source terms $$u_{tt}-M\\\\left( \\\\underset{\\\\Omega }{\\\\int }\\\\left\\\\vert \\\\nabla u\\\\right\\\\vert ^{p}dx\\\\right) \\\\Delta _{p}u+\\\\left\\\\vert u_{t}\\\\right\\\\vert ^{m-2}u_{t}=\\\\left\\\\vert u\\\\right\\\\vert ^{r-2}u.$$ Under suitable assumptions and positive initial energy, we prove the global existence of solution by using the potential energy and Nehari's functionals. Finally, the stability of equation is established based on Komornik's integral inequality.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.4.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global existence and stability of solution for a p-Kirchhoff type hyperbolic equation with damping and source terms
"In this paper, we consider a nonlinear $p-$Kirchhoff type hyperbolic equation with damping and source terms $$u_{tt}-M\left( \underset{\Omega }{\int }\left\vert \nabla u\right\vert ^{p}dx\right) \Delta _{p}u+\left\vert u_{t}\right\vert ^{m-2}u_{t}=\left\vert u\right\vert ^{r-2}u.$$ Under suitable assumptions and positive initial energy, we prove the global existence of solution by using the potential energy and Nehari's functionals. Finally, the stability of equation is established based on Komornik's integral inequality."