挖掘基因表达谱的移位和缩放协同调控模式

Xin Xu, Ying Lu, A. Tung, Wei Wang
{"title":"挖掘基因表达谱的移位和缩放协同调控模式","authors":"Xin Xu, Ying Lu, A. Tung, Wei Wang","doi":"10.1109/ICDE.2006.98","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new model for coherent clustering of gene expression data called reg-cluster. The proposed model allows (1) the expression profiles of genes in a cluster to follow any shifting-and-scaling patterns in subspace, where the scaling can be either positive or negative, and (2) the expression value changes across any two conditions of the cluster to be significant. No previous work measures up to the task that we have set: the density-based subspace clustering algorithms require genes to have similar expression levels to each other in subspace; the pattern-based biclustering algorithms only allow pure shifting or pure scaling patterns; and the tendency-based biclustering algorithms have no coherence guarantees. We also develop a novel patternbased biclustering algorithm for identifying shifting-andscaling co-regulation patterns, satisfying both coherence constraint and regulation constraint. Our experimental results show that the reg-cluster algorithm is able to detect a significant amount of clusters missed by previous models, and these clusters are potentially of high biological significance.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"51 1","pages":"89-89"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Mining Shifting-and-Scaling Co-Regulation Patterns on Gene Expression Profiles\",\"authors\":\"Xin Xu, Ying Lu, A. Tung, Wei Wang\",\"doi\":\"10.1109/ICDE.2006.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new model for coherent clustering of gene expression data called reg-cluster. The proposed model allows (1) the expression profiles of genes in a cluster to follow any shifting-and-scaling patterns in subspace, where the scaling can be either positive or negative, and (2) the expression value changes across any two conditions of the cluster to be significant. No previous work measures up to the task that we have set: the density-based subspace clustering algorithms require genes to have similar expression levels to each other in subspace; the pattern-based biclustering algorithms only allow pure shifting or pure scaling patterns; and the tendency-based biclustering algorithms have no coherence guarantees. We also develop a novel patternbased biclustering algorithm for identifying shifting-andscaling co-regulation patterns, satisfying both coherence constraint and regulation constraint. Our experimental results show that the reg-cluster algorithm is able to detect a significant amount of clusters missed by previous models, and these clusters are potentially of high biological significance.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"51 1\",\"pages\":\"89-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

在本文中,我们提出了一种新的基因表达数据的相干聚类模型,称为reg-cluster。所提出的模型允许(1)集群中基因的表达谱在子空间中遵循任何移动和缩放模式,其中缩放可以是正的或负的;(2)在集群的任何两种条件下表达值的变化都是显著的。以前的工作没有达到我们设定的任务:基于密度的子空间聚类算法要求基因在子空间中具有相似的表达水平;基于模式的双聚类算法只允许纯移动或纯缩放模式;基于趋势的双聚类算法没有一致性保证。我们还开发了一种新的基于模式的双聚类算法,用于识别移动和缩放的共调节模式,同时满足相干约束和调节约束。我们的实验结果表明,reg-cluster算法能够检测到之前模型遗漏的大量聚类,这些聚类可能具有很高的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Shifting-and-Scaling Co-Regulation Patterns on Gene Expression Profiles
In this paper, we propose a new model for coherent clustering of gene expression data called reg-cluster. The proposed model allows (1) the expression profiles of genes in a cluster to follow any shifting-and-scaling patterns in subspace, where the scaling can be either positive or negative, and (2) the expression value changes across any two conditions of the cluster to be significant. No previous work measures up to the task that we have set: the density-based subspace clustering algorithms require genes to have similar expression levels to each other in subspace; the pattern-based biclustering algorithms only allow pure shifting or pure scaling patterns; and the tendency-based biclustering algorithms have no coherence guarantees. We also develop a novel patternbased biclustering algorithm for identifying shifting-andscaling co-regulation patterns, satisfying both coherence constraint and regulation constraint. Our experimental results show that the reg-cluster algorithm is able to detect a significant amount of clusters missed by previous models, and these clusters are potentially of high biological significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信