(2+1)维Kundu-Mukherjee-Naskar模型的IBSEFM精确解

IF 0.2 Q4 MATHEMATICS, APPLIED
K. Mamedov, U. Demirbilek, V. Ala
{"title":"(2+1)维Kundu-Mukherjee-Naskar模型的IBSEFM精确解","authors":"K. Mamedov, U. Demirbilek, V. Ala","doi":"10.14529/mmp220202","DOIUrl":null,"url":null,"abstract":"The aim of this study is to construct the exact solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar (KMN) equation via Improved Bernoulli Sub-Equation Function Method (IBSEFM). The physics of this model describes optical dromions in (2+1)-dimensional case. It is also studied in fluid dynamics. Applying the proposed method, we obtain new exact solutions of (2+1)-dimensional KMN equation. Moreover, we plot the 2D-3D figures and contour surfaces according to the suitable parameters by the aid of computer software. The results confirm that IBSEFM is powerful, effective and straightforward for solving nonlinear partial differential equations arising in mathematical physics.","PeriodicalId":44106,"journal":{"name":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact Solutions of the (2+1)-Dimensional Kundu-Mukherjee-Naskar Model via IBSEFM\",\"authors\":\"K. Mamedov, U. Demirbilek, V. Ala\",\"doi\":\"10.14529/mmp220202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to construct the exact solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar (KMN) equation via Improved Bernoulli Sub-Equation Function Method (IBSEFM). The physics of this model describes optical dromions in (2+1)-dimensional case. It is also studied in fluid dynamics. Applying the proposed method, we obtain new exact solutions of (2+1)-dimensional KMN equation. Moreover, we plot the 2D-3D figures and contour surfaces according to the suitable parameters by the aid of computer software. The results confirm that IBSEFM is powerful, effective and straightforward for solving nonlinear partial differential equations arising in mathematical physics.\",\"PeriodicalId\":44106,\"journal\":{\"name\":\"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/mmp220202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/mmp220202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是利用改进的伯努利子方程函数法(IBSEFM)构造(2+1)维Kundu-Mukherjee-Naskar (KMN)方程的精确解。该模型的物理性质描述了(2+1)维情况下的光学错觉。在流体动力学中也有研究。应用该方法,我们得到了(2+1)维KMN方程的新的精确解。在此基础上,利用计算机软件根据合适的参数绘制出二维-三维图形和等高线曲面。结果证实了IBSEFM对于求解数学物理中出现的非线性偏微分方程是强大、有效和简单的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Solutions of the (2+1)-Dimensional Kundu-Mukherjee-Naskar Model via IBSEFM
The aim of this study is to construct the exact solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar (KMN) equation via Improved Bernoulli Sub-Equation Function Method (IBSEFM). The physics of this model describes optical dromions in (2+1)-dimensional case. It is also studied in fluid dynamics. Applying the proposed method, we obtain new exact solutions of (2+1)-dimensional KMN equation. Moreover, we plot the 2D-3D figures and contour surfaces according to the suitable parameters by the aid of computer software. The results confirm that IBSEFM is powerful, effective and straightforward for solving nonlinear partial differential equations arising in mathematical physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
1
期刊介绍: Series «Mathematical Modelling, Programming & Computer Software» of the South Ural State University Bulletin was created in 2008. Nowadays it is published four times a year. The basic goal of the editorial board as well as the editorial commission of series «Mathematical Modelling, Programming & Computer Software» is research promotion in the sphere of mathematical modelling in natural, engineering and economic science. Priority publication right is given to: -the results of high-quality research of mathematical models, revealing less obvious properties; -the results of computational research, containing designs of new computational algorithms relating to mathematical models; -program systems, designed for computational experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信