非线性分数阶微分方程的变分迭代数值解

A. Nagdy, KH. M. Hashem
{"title":"非线性分数阶微分方程的变分迭代数值解","authors":"A. Nagdy, KH. M. Hashem","doi":"10.22436/jnsa.014.02.01","DOIUrl":null,"url":null,"abstract":"In this paper, numerical techniques are used for solving boundary value problems of nonlinear fractional differential equations. Variational iteration method is applied to approximate solutions for this equation with boundary conditions. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed method, and we compare between the numerical solutions and the exact solution of these examples.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"30 1","pages":"54-62"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical solutions of nonlinear fractional differential equations by variational iteration method\",\"authors\":\"A. Nagdy, KH. M. Hashem\",\"doi\":\"10.22436/jnsa.014.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, numerical techniques are used for solving boundary value problems of nonlinear fractional differential equations. Variational iteration method is applied to approximate solutions for this equation with boundary conditions. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed method, and we compare between the numerical solutions and the exact solution of these examples.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"30 1\",\"pages\":\"54-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.014.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.014.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用数值方法求解非线性分数阶微分方程的边值问题。采用变分迭代法对该方程的边界条件进行近似求解。数值算例说明了该方法的有效性和准确性,并将数值解与精确解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solutions of nonlinear fractional differential equations by variational iteration method
In this paper, numerical techniques are used for solving boundary value problems of nonlinear fractional differential equations. Variational iteration method is applied to approximate solutions for this equation with boundary conditions. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed method, and we compare between the numerical solutions and the exact solution of these examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信