基于卷积神经网络的水果分类控制系统的开发

Z. Khaing, Ye Naung, Phyo Hylam Htut
{"title":"基于卷积神经网络的水果分类控制系统的开发","authors":"Z. Khaing, Ye Naung, Phyo Hylam Htut","doi":"10.1109/EICONRUS.2018.8317456","DOIUrl":null,"url":null,"abstract":"Recognition of visual images is one of the most important components of the control systems, information processing systems and automated decision-making systems. In this paper the approach to develop control system of objection recognition based on convolutional neural network (CNN) is considered. The CNN is applied to the tasks of fruits detection and recognition through parameter optimization. The result of our test had accuracy in the classification close to 94% for the 30 classes of 971 images, indicating that the proposed system and methods could be used for vision subsystem based control applications.","PeriodicalId":6562,"journal":{"name":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"28 1","pages":"1805-1807"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Development of control system for fruit classification based on convolutional neural network\",\"authors\":\"Z. Khaing, Ye Naung, Phyo Hylam Htut\",\"doi\":\"10.1109/EICONRUS.2018.8317456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of visual images is one of the most important components of the control systems, information processing systems and automated decision-making systems. In this paper the approach to develop control system of objection recognition based on convolutional neural network (CNN) is considered. The CNN is applied to the tasks of fruits detection and recognition through parameter optimization. The result of our test had accuracy in the classification close to 94% for the 30 classes of 971 images, indicating that the proposed system and methods could be used for vision subsystem based control applications.\",\"PeriodicalId\":6562,\"journal\":{\"name\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"28 1\",\"pages\":\"1805-1807\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2018.8317456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2018.8317456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

视觉图像识别是控制系统、信息处理系统和自动决策系统的重要组成部分之一。研究了基于卷积神经网络(CNN)的目标识别控制系统的开发方法。通过参数优化,将CNN应用于水果检测和识别任务。在971张图像的30个分类中,我们的分类准确率接近94%,表明我们提出的系统和方法可以用于基于视觉子系统的控制应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of control system for fruit classification based on convolutional neural network
Recognition of visual images is one of the most important components of the control systems, information processing systems and automated decision-making systems. In this paper the approach to develop control system of objection recognition based on convolutional neural network (CNN) is considered. The CNN is applied to the tasks of fruits detection and recognition through parameter optimization. The result of our test had accuracy in the classification close to 94% for the 30 classes of 971 images, indicating that the proposed system and methods could be used for vision subsystem based control applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信