{"title":"Arl的多能闪光计算机断层扫描诊断的发展:通过重建体积跟踪质量通量的能力","authors":"M. Zellner, M. S. Love, Kyle Champley","doi":"10.1115/hvis2019-015","DOIUrl":null,"url":null,"abstract":"\n The U.S. Combat Capabilities Development Command Army Research Laboratory and Lawrence Livermore National Laboratory are currently developing a Multi-Energy Flash Computed Tomography (MEFCT) diagnostic for multi-frame, in situ, three-dimensional radiographic assessment of ballistic impact phenomena. To accomplish this, we combine the capabilities of medical X-ray computed tomography and high-speed computed tomography, to produce a system that captures three independent, time-sequenced volume reconstructions throughout the timespan of a typical dynamic ballistic event. Because this system has the capability to image an event across three spatial dimensions and time, it is the first of its kind to track mass/material-flux of an un-bounded system through a volume at ballistic timescales.\n To demonstrate the diagnostic’s capabilities, an assessment of a bullet penetrating an aluminum plate is performed. A compilation of the three volume reconstructions were computed to describe the event. The results were compared to a state-of-the-art simulation of the event using EPIC, a Lagrangian hydrocode with penetration applications. This comparison shows how using a four-dimensional computed tomography system can benefit the validation of physical failure and mass/material-flow models.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Arl’s Multi-Energy Flash Computed Tomography Diagnostic: Capability to Track Mass-Flux Through a Reconstruction Volume\",\"authors\":\"M. Zellner, M. S. Love, Kyle Champley\",\"doi\":\"10.1115/hvis2019-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The U.S. Combat Capabilities Development Command Army Research Laboratory and Lawrence Livermore National Laboratory are currently developing a Multi-Energy Flash Computed Tomography (MEFCT) diagnostic for multi-frame, in situ, three-dimensional radiographic assessment of ballistic impact phenomena. To accomplish this, we combine the capabilities of medical X-ray computed tomography and high-speed computed tomography, to produce a system that captures three independent, time-sequenced volume reconstructions throughout the timespan of a typical dynamic ballistic event. Because this system has the capability to image an event across three spatial dimensions and time, it is the first of its kind to track mass/material-flux of an un-bounded system through a volume at ballistic timescales.\\n To demonstrate the diagnostic’s capabilities, an assessment of a bullet penetrating an aluminum plate is performed. A compilation of the three volume reconstructions were computed to describe the event. The results were compared to a state-of-the-art simulation of the event using EPIC, a Lagrangian hydrocode with penetration applications. This comparison shows how using a four-dimensional computed tomography system can benefit the validation of physical failure and mass/material-flow models.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Arl’s Multi-Energy Flash Computed Tomography Diagnostic: Capability to Track Mass-Flux Through a Reconstruction Volume
The U.S. Combat Capabilities Development Command Army Research Laboratory and Lawrence Livermore National Laboratory are currently developing a Multi-Energy Flash Computed Tomography (MEFCT) diagnostic for multi-frame, in situ, three-dimensional radiographic assessment of ballistic impact phenomena. To accomplish this, we combine the capabilities of medical X-ray computed tomography and high-speed computed tomography, to produce a system that captures three independent, time-sequenced volume reconstructions throughout the timespan of a typical dynamic ballistic event. Because this system has the capability to image an event across three spatial dimensions and time, it is the first of its kind to track mass/material-flux of an un-bounded system through a volume at ballistic timescales.
To demonstrate the diagnostic’s capabilities, an assessment of a bullet penetrating an aluminum plate is performed. A compilation of the three volume reconstructions were computed to describe the event. The results were compared to a state-of-the-art simulation of the event using EPIC, a Lagrangian hydrocode with penetration applications. This comparison shows how using a four-dimensional computed tomography system can benefit the validation of physical failure and mass/material-flow models.