{"title":"稀疏Johnson-Lindenstrauss变换的简单分析","authors":"Michael B. Cohen, T. S. Jayram, Jelani Nelson","doi":"10.4230/OASIcs.SOSA.2018.15","DOIUrl":null,"url":null,"abstract":"For every n-point subset X of Euclidean space and target distortion 1+eps for 0 l_2^m where f(x) = Ax for A a matrix with m rows where (1) m = O((log n)/eps^2), and (2) each column of A is sparse, having only O(eps m) non-zero entries. Though the constructions given for such A in (Kane, Nelson, J. ACM 2014) are simple, the analyses are not, employing intricate combinatorial arguments. We here give two simple alternative proofs of their main result, involving no delicate combinatorics. One of these proofs has already been tested pedagogically, requiring slightly under forty minutes by the third author at a casual pace to cover all details in a blackboard course lecture.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"37 1","pages":"15:1-15:9"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Simple Analyses of the Sparse Johnson-Lindenstrauss Transform\",\"authors\":\"Michael B. Cohen, T. S. Jayram, Jelani Nelson\",\"doi\":\"10.4230/OASIcs.SOSA.2018.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every n-point subset X of Euclidean space and target distortion 1+eps for 0 l_2^m where f(x) = Ax for A a matrix with m rows where (1) m = O((log n)/eps^2), and (2) each column of A is sparse, having only O(eps m) non-zero entries. Though the constructions given for such A in (Kane, Nelson, J. ACM 2014) are simple, the analyses are not, employing intricate combinatorial arguments. We here give two simple alternative proofs of their main result, involving no delicate combinatorics. One of these proofs has already been tested pedagogically, requiring slightly under forty minutes by the third author at a casual pace to cover all details in a blackboard course lecture.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"37 1\",\"pages\":\"15:1-15:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.SOSA.2018.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2018.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple Analyses of the Sparse Johnson-Lindenstrauss Transform
For every n-point subset X of Euclidean space and target distortion 1+eps for 0 l_2^m where f(x) = Ax for A a matrix with m rows where (1) m = O((log n)/eps^2), and (2) each column of A is sparse, having only O(eps m) non-zero entries. Though the constructions given for such A in (Kane, Nelson, J. ACM 2014) are simple, the analyses are not, employing intricate combinatorial arguments. We here give two simple alternative proofs of their main result, involving no delicate combinatorics. One of these proofs has already been tested pedagogically, requiring slightly under forty minutes by the third author at a casual pace to cover all details in a blackboard course lecture.