F. Long, S. Baik, D. Chung, F. Xue, E. Lass, D. Seidman, D. Dunand
{"title":"一种多组分co基L1有序金属间合金的显微组织和蠕变性能","authors":"F. Long, S. Baik, D. Chung, F. Xue, E. Lass, D. Seidman, D. Dunand","doi":"10.2139/ssrn.3499089","DOIUrl":null,"url":null,"abstract":"The chemistry, thermodynamics and mechanical properties of the L1<sub>2</sub>-ordered Co<sub>3</sub>(Al,W) γ'-phase are crucial for understanding γ(f.c.c.)/γ'(L1<sub>2</sub>) cobalt-based superalloys. A single-phase γ'(L1<sub>2</sub>) alloy with the composition Co-30Ni-11Al-5.5W-4Ti-2.5Ta-0.10B (at.%) and a γ'-solvus temperature of 1268°C was recently identified using a Calphad-methodology. Scanning and transmission electron microscopy reveals that the single-phase microstructure is stable at 900 and 1000 °C for 1000 h and at 1100 °C for 168 h, without other phases being observed, resulting in similar levels of microhardness for all annealing temperatures. Atom-probe tomography confirms the presence of a single-phase γ'(L1<sub>2</sub>)-microstructure with a composition of (Co,Ni)<sub>3</sub>(Al,W,Ti,Ta,B). Grain boundaries exhibit depletion of Co, Ni, W and Ta and enrichment of Al and B. A remarkable yield stress anomaly is observed, with the yield strength increasing from ~300 to ~700 MPa from room temperature to 800°C, which is stronger than Co<sub>3</sub>(Al,W)(L12) and Ni<sub>3</sub>Al(L1<sub>2</sub>). The creep tests at 850 and 950 °C display power-law behavior with a stress exponent of n = 3.7 and an activation energy for L26 of Q<sub>n</sub> = 497 kJ/mol, similar to that of single-phase Ni<sub>3</sub>Al(L1<sub>2</sub>) compound (Q<sub>n</sub> = 406-421 kJ/mol).","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructure and Creep Performance of a Multicomponent Co-Based L1 2-Ordered Intermetallic Alloy\",\"authors\":\"F. Long, S. Baik, D. Chung, F. Xue, E. Lass, D. Seidman, D. Dunand\",\"doi\":\"10.2139/ssrn.3499089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemistry, thermodynamics and mechanical properties of the L1<sub>2</sub>-ordered Co<sub>3</sub>(Al,W) γ'-phase are crucial for understanding γ(f.c.c.)/γ'(L1<sub>2</sub>) cobalt-based superalloys. A single-phase γ'(L1<sub>2</sub>) alloy with the composition Co-30Ni-11Al-5.5W-4Ti-2.5Ta-0.10B (at.%) and a γ'-solvus temperature of 1268°C was recently identified using a Calphad-methodology. Scanning and transmission electron microscopy reveals that the single-phase microstructure is stable at 900 and 1000 °C for 1000 h and at 1100 °C for 168 h, without other phases being observed, resulting in similar levels of microhardness for all annealing temperatures. Atom-probe tomography confirms the presence of a single-phase γ'(L1<sub>2</sub>)-microstructure with a composition of (Co,Ni)<sub>3</sub>(Al,W,Ti,Ta,B). Grain boundaries exhibit depletion of Co, Ni, W and Ta and enrichment of Al and B. A remarkable yield stress anomaly is observed, with the yield strength increasing from ~300 to ~700 MPa from room temperature to 800°C, which is stronger than Co<sub>3</sub>(Al,W)(L12) and Ni<sub>3</sub>Al(L1<sub>2</sub>). The creep tests at 850 and 950 °C display power-law behavior with a stress exponent of n = 3.7 and an activation energy for L26 of Q<sub>n</sub> = 497 kJ/mol, similar to that of single-phase Ni<sub>3</sub>Al(L1<sub>2</sub>) compound (Q<sub>n</sub> = 406-421 kJ/mol).\",\"PeriodicalId\":18300,\"journal\":{\"name\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3499089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3499089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure and Creep Performance of a Multicomponent Co-Based L1 2-Ordered Intermetallic Alloy
The chemistry, thermodynamics and mechanical properties of the L12-ordered Co3(Al,W) γ'-phase are crucial for understanding γ(f.c.c.)/γ'(L12) cobalt-based superalloys. A single-phase γ'(L12) alloy with the composition Co-30Ni-11Al-5.5W-4Ti-2.5Ta-0.10B (at.%) and a γ'-solvus temperature of 1268°C was recently identified using a Calphad-methodology. Scanning and transmission electron microscopy reveals that the single-phase microstructure is stable at 900 and 1000 °C for 1000 h and at 1100 °C for 168 h, without other phases being observed, resulting in similar levels of microhardness for all annealing temperatures. Atom-probe tomography confirms the presence of a single-phase γ'(L12)-microstructure with a composition of (Co,Ni)3(Al,W,Ti,Ta,B). Grain boundaries exhibit depletion of Co, Ni, W and Ta and enrichment of Al and B. A remarkable yield stress anomaly is observed, with the yield strength increasing from ~300 to ~700 MPa from room temperature to 800°C, which is stronger than Co3(Al,W)(L12) and Ni3Al(L12). The creep tests at 850 and 950 °C display power-law behavior with a stress exponent of n = 3.7 and an activation energy for L26 of Qn = 497 kJ/mol, similar to that of single-phase Ni3Al(L12) compound (Qn = 406-421 kJ/mol).