Elizabeth L. Bouzarth, B. Grannan, John M Harris, A. Hartley, K. Hutson, E. Morton
{"title":"挥棒移位:棒球中防守位置的数学方法","authors":"Elizabeth L. Bouzarth, B. Grannan, John M Harris, A. Hartley, K. Hutson, E. Morton","doi":"10.1515/jqas-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract Defensive repositioning strategies (shifts) have become more prevalent in Major League Baseball in recent years. In 2018, batters faced some form of the shift in 34% of their plate appearances (Sawchik, Travis. 2019. “Don’t Worry, MLB–Hitters Are Killing The Shift On Their Own.” FiveThirtyEight, January 17, 2019. Also available at fivethirtyeight.com/features/dont-worry-mlb-hitters-are-killing-the-shift-on-their-own/). Most teams use a shift that overloads one side of the infield and adjusts the positioning of the outfield. In this work we describe a mathematical approach to the positioning of players over the entire field of play without the limitations of traditional positions or current methods of shifting. The model uses historical data for individual batters, and it leaves open the possibility of fewer than four infielders. The model also incorporates risk penalties for positioning players too far from areas of the field in which extra-base hits are more likely. This work is meant to serve as a decision-making tool for coaches and managers to best use their defensive assets. Our simulations show that an optimal positioning with three infielders lowered predicted batting average on balls in play (BABIP) by 5.9% for right-handers and by 10.3% for left-handers on average when compared to a standard four-infielder placement of players.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Swing shift: a mathematical approach to defensive positioning in baseball\",\"authors\":\"Elizabeth L. Bouzarth, B. Grannan, John M Harris, A. Hartley, K. Hutson, E. Morton\",\"doi\":\"10.1515/jqas-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Defensive repositioning strategies (shifts) have become more prevalent in Major League Baseball in recent years. In 2018, batters faced some form of the shift in 34% of their plate appearances (Sawchik, Travis. 2019. “Don’t Worry, MLB–Hitters Are Killing The Shift On Their Own.” FiveThirtyEight, January 17, 2019. Also available at fivethirtyeight.com/features/dont-worry-mlb-hitters-are-killing-the-shift-on-their-own/). Most teams use a shift that overloads one side of the infield and adjusts the positioning of the outfield. In this work we describe a mathematical approach to the positioning of players over the entire field of play without the limitations of traditional positions or current methods of shifting. The model uses historical data for individual batters, and it leaves open the possibility of fewer than four infielders. The model also incorporates risk penalties for positioning players too far from areas of the field in which extra-base hits are more likely. This work is meant to serve as a decision-making tool for coaches and managers to best use their defensive assets. Our simulations show that an optimal positioning with three infielders lowered predicted batting average on balls in play (BABIP) by 5.9% for right-handers and by 10.3% for left-handers on average when compared to a standard four-infielder placement of players.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2020-0027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2020-0027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Swing shift: a mathematical approach to defensive positioning in baseball
Abstract Defensive repositioning strategies (shifts) have become more prevalent in Major League Baseball in recent years. In 2018, batters faced some form of the shift in 34% of their plate appearances (Sawchik, Travis. 2019. “Don’t Worry, MLB–Hitters Are Killing The Shift On Their Own.” FiveThirtyEight, January 17, 2019. Also available at fivethirtyeight.com/features/dont-worry-mlb-hitters-are-killing-the-shift-on-their-own/). Most teams use a shift that overloads one side of the infield and adjusts the positioning of the outfield. In this work we describe a mathematical approach to the positioning of players over the entire field of play without the limitations of traditional positions or current methods of shifting. The model uses historical data for individual batters, and it leaves open the possibility of fewer than four infielders. The model also incorporates risk penalties for positioning players too far from areas of the field in which extra-base hits are more likely. This work is meant to serve as a decision-making tool for coaches and managers to best use their defensive assets. Our simulations show that an optimal positioning with three infielders lowered predicted batting average on balls in play (BABIP) by 5.9% for right-handers and by 10.3% for left-handers on average when compared to a standard four-infielder placement of players.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.