人工智能电力跟踪技术在解除管制电力市场中的偏好比较

H. Shareef, S. A. Khalid, M. Mustafa, A. Khairuddin
{"title":"人工智能电力跟踪技术在解除管制电力市场中的偏好比较","authors":"H. Shareef, S. A. Khalid, M. Mustafa, A. Khairuddin","doi":"10.1155/2012/720463","DOIUrl":null,"url":null,"abstract":"This paper compares the two preference artificial intelligent (AI) techniques, namely, artificial neural network (ANN) and genetic algorithm optimized least square support vector machine (GA-LSSVM) approach, to allocate the real power output of individual generators to system loads. Based on solved load flow results, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the AI techniques compared to those of the MNE method. The AI methods provide the results in a faster and convenient manner with very good accuracy.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"83 1","pages":"720463:1-720463:9"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preference Comparison of AI Power Tracing Techniques for Deregulated Power Markets\",\"authors\":\"H. Shareef, S. A. Khalid, M. Mustafa, A. Khairuddin\",\"doi\":\"10.1155/2012/720463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares the two preference artificial intelligent (AI) techniques, namely, artificial neural network (ANN) and genetic algorithm optimized least square support vector machine (GA-LSSVM) approach, to allocate the real power output of individual generators to system loads. Based on solved load flow results, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the AI techniques compared to those of the MNE method. The AI methods provide the results in a faster and convenient manner with very good accuracy.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":\"83 1\",\"pages\":\"720463:1-720463:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/720463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/720463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文比较了人工神经网络(ANN)和遗传算法优化最小二乘支持向量机(GA-LSSVM)两种优选的人工智能(AI)方法,用于将单个发电机的实际输出功率分配给系统负载。在求解潮流结果的基础上,首先采用修正节点方程法(MNE)确定各发电机对负荷的实际功率贡献;然后利用人工智能技术,利用跨国公司方法的结果和潮流信息对电力转移进行估计。马来西亚南部的25辆公交车等效系统被用作测试系统,以说明与跨国公司方法相比,人工智能技术的有效性。人工智能方法以更快、更方便的方式提供结果,并且具有很好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preference Comparison of AI Power Tracing Techniques for Deregulated Power Markets
This paper compares the two preference artificial intelligent (AI) techniques, namely, artificial neural network (ANN) and genetic algorithm optimized least square support vector machine (GA-LSSVM) approach, to allocate the real power output of individual generators to system loads. Based on solved load flow results, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the AI techniques compared to those of the MNE method. The AI methods provide the results in a faster and convenient manner with very good accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信