{"title":"两个有限域直积中一个特殊子集的最小陪集覆盖","authors":"A. Minasyan","doi":"10.46991/pysu:a/2017.51.3.236","DOIUrl":null,"url":null,"abstract":"In this paper we estimate the minimal number of systems of linear equations of $n+m$ variables over a finite field $F_q$ such that the union of all solutions of all the systems coincides exactly with all elements of $\\overset{\\ast}{\\mathbb{F}_{q}^{n}} \\times \\overset{\\ast}{\\mathbb{F}_{q}^{m}}$.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE MINIMAL COSET COVERING FOR A SPECIAL SUBSET IN DIRECT PRODUCT OF TWO FINITE FIELDS\",\"authors\":\"A. Minasyan\",\"doi\":\"10.46991/pysu:a/2017.51.3.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we estimate the minimal number of systems of linear equations of $n+m$ variables over a finite field $F_q$ such that the union of all solutions of all the systems coincides exactly with all elements of $\\\\overset{\\\\ast}{\\\\mathbb{F}_{q}^{n}} \\\\times \\\\overset{\\\\ast}{\\\\mathbb{F}_{q}^{m}}$.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2017.51.3.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.3.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON THE MINIMAL COSET COVERING FOR A SPECIAL SUBSET IN DIRECT PRODUCT OF TWO FINITE FIELDS
In this paper we estimate the minimal number of systems of linear equations of $n+m$ variables over a finite field $F_q$ such that the union of all solutions of all the systems coincides exactly with all elements of $\overset{\ast}{\mathbb{F}_{q}^{n}} \times \overset{\ast}{\mathbb{F}_{q}^{m}}$.