纳米氧化锌添加剂用于提高润滑油性能

A. Rajbhandari Nyachhyon, Sanoj Hajam, H. Trital
{"title":"纳米氧化锌添加剂用于提高润滑油性能","authors":"A. Rajbhandari Nyachhyon, Sanoj Hajam, H. Trital","doi":"10.3126/sw.v15i15.45643","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) nano additives were successfully synthesized in laboratory by precipitation technique. The XRD showed crystalline nature of ZnO with the average crystallite size of 16 nm. The stretching band of ZnO was found at around 400 cm-1 to 600 cm-1 wave number in FTIR. The prepared nano particle have been used as nano additive and sodium lauryl sulphate (SLS) as surfactant, in base oil to improve physio-chemical parameter of lubricants. The result revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 90.72 and 10.40 were obtained at 40oC and 100o C respectively. Similarly, viscosity index were found to be 96 which was improved indicating the use of lubricant in slightly high temperature is possible. The pour point was found to be decreased to -9.2oC which was quite significant and could be used in cold environment. The flash point was also found to be increased from 225o C to 230oC which indicated that the prepared nano additive ZnO acts as flash point enhancer. The corrosion test done by copper strip comparative method and was found to be 1b for additive indicating the non-corrosive nature. The absence of moisture and pH around the neutral range 6.65 showed that the additive blended lubricant is not harmful for machinery devices.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nano zinc oxide additive for the enhancement of lubricant properties\",\"authors\":\"A. Rajbhandari Nyachhyon, Sanoj Hajam, H. Trital\",\"doi\":\"10.3126/sw.v15i15.45643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc oxide (ZnO) nano additives were successfully synthesized in laboratory by precipitation technique. The XRD showed crystalline nature of ZnO with the average crystallite size of 16 nm. The stretching band of ZnO was found at around 400 cm-1 to 600 cm-1 wave number in FTIR. The prepared nano particle have been used as nano additive and sodium lauryl sulphate (SLS) as surfactant, in base oil to improve physio-chemical parameter of lubricants. The result revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 90.72 and 10.40 were obtained at 40oC and 100o C respectively. Similarly, viscosity index were found to be 96 which was improved indicating the use of lubricant in slightly high temperature is possible. The pour point was found to be decreased to -9.2oC which was quite significant and could be used in cold environment. The flash point was also found to be increased from 225o C to 230oC which indicated that the prepared nano additive ZnO acts as flash point enhancer. The corrosion test done by copper strip comparative method and was found to be 1b for additive indicating the non-corrosive nature. The absence of moisture and pH around the neutral range 6.65 showed that the additive blended lubricant is not harmful for machinery devices.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v15i15.45643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v15i15.45643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用沉淀法在实验室成功合成了氧化锌纳米添加剂。XRD分析表明ZnO为结晶性质,平均晶粒尺寸为16 nm。在红外光谱中,ZnO在400 cm-1 ~ 600 cm-1左右的波数处存在拉伸带。将所制备的纳米颗粒作为纳米添加剂,以十二烷基硫酸钠(SLS)为表面活性剂,用于基础油中,以改善润滑油的理化参数。结果表明,该添加剂混合基础油(润滑油)具有优良的润滑性能。在40℃和1000℃时,其运动粘度分别为90.72和10.40。同样,粘度指数为96,这表明润滑油可以在稍高的温度下使用。浇注点降至-9.2℃,效果显著,可用于低温环境。闪点也从2250℃提高到230℃,表明所制备的纳米添加剂ZnO起到了增强闪点的作用。采用铜带比较法进行腐蚀试验,发现添加剂的腐蚀性能为1b,表明其无腐蚀性。无水分,pH值在中性范围6.65左右,表明添加剂混合润滑油对机械装置无害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano zinc oxide additive for the enhancement of lubricant properties
Zinc oxide (ZnO) nano additives were successfully synthesized in laboratory by precipitation technique. The XRD showed crystalline nature of ZnO with the average crystallite size of 16 nm. The stretching band of ZnO was found at around 400 cm-1 to 600 cm-1 wave number in FTIR. The prepared nano particle have been used as nano additive and sodium lauryl sulphate (SLS) as surfactant, in base oil to improve physio-chemical parameter of lubricants. The result revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 90.72 and 10.40 were obtained at 40oC and 100o C respectively. Similarly, viscosity index were found to be 96 which was improved indicating the use of lubricant in slightly high temperature is possible. The pour point was found to be decreased to -9.2oC which was quite significant and could be used in cold environment. The flash point was also found to be increased from 225o C to 230oC which indicated that the prepared nano additive ZnO acts as flash point enhancer. The corrosion test done by copper strip comparative method and was found to be 1b for additive indicating the non-corrosive nature. The absence of moisture and pH around the neutral range 6.65 showed that the additive blended lubricant is not harmful for machinery devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信