{"title":"基于倏逝场吸收的光纤传感器用于电力变压器油退化检测","authors":"Ş. Hayber, T. Tabaru, Mehmet Güçyetmez","doi":"10.1080/01468030.2021.2001878","DOIUrl":null,"url":null,"abstract":"Observing the transformer oil quality is essential for the transformer’s health and system. The aging state of the transformer oils and the average remaining life accordingly can be determined using the breakdown voltage (BDV) test, ultraviolet-visible (UV-Vis) spectroscopy, and the refractive index (RI) standard methods. The subject of this study is to design and manufacture a much simpler and low-cost, evanescent field absorptionbased fiber optic sensor (EFA-FOS) compatible with these proven standard methods and to perform a comparative performance analysis by determining a critical voltage threshold. Apart from the expensive and cumbersome standard methods mentioned above, the usability of the oil is carried out, thanks to the online sensor system, with the pretest using this critical voltage value. EFA-FOS measurement results of oil samples can determine the samples’ aging degree with high accuracy. The samples’ RI is determined with EFA-FOS with a sensitivity of −70 V/RIU and a linearity of 0.98 (R). A strong relationship has also been determined between the sensor output and measured BDV with a regression constant of 0.86 (R). ARTICLE HISTORY Received 30 April 2021 Accepted 31 October 2021","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"98 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evanescent Field Absorption-Based Fiber Optic Sensor for Detecting Power Transformer Oil Degradation\",\"authors\":\"Ş. Hayber, T. Tabaru, Mehmet Güçyetmez\",\"doi\":\"10.1080/01468030.2021.2001878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observing the transformer oil quality is essential for the transformer’s health and system. The aging state of the transformer oils and the average remaining life accordingly can be determined using the breakdown voltage (BDV) test, ultraviolet-visible (UV-Vis) spectroscopy, and the refractive index (RI) standard methods. The subject of this study is to design and manufacture a much simpler and low-cost, evanescent field absorptionbased fiber optic sensor (EFA-FOS) compatible with these proven standard methods and to perform a comparative performance analysis by determining a critical voltage threshold. Apart from the expensive and cumbersome standard methods mentioned above, the usability of the oil is carried out, thanks to the online sensor system, with the pretest using this critical voltage value. EFA-FOS measurement results of oil samples can determine the samples’ aging degree with high accuracy. The samples’ RI is determined with EFA-FOS with a sensitivity of −70 V/RIU and a linearity of 0.98 (R). A strong relationship has also been determined between the sensor output and measured BDV with a regression constant of 0.86 (R). ARTICLE HISTORY Received 30 April 2021 Accepted 31 October 2021\",\"PeriodicalId\":50449,\"journal\":{\"name\":\"Fiber and Integrated Optics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fiber and Integrated Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/01468030.2021.2001878\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/01468030.2021.2001878","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Evanescent Field Absorption-Based Fiber Optic Sensor for Detecting Power Transformer Oil Degradation
Observing the transformer oil quality is essential for the transformer’s health and system. The aging state of the transformer oils and the average remaining life accordingly can be determined using the breakdown voltage (BDV) test, ultraviolet-visible (UV-Vis) spectroscopy, and the refractive index (RI) standard methods. The subject of this study is to design and manufacture a much simpler and low-cost, evanescent field absorptionbased fiber optic sensor (EFA-FOS) compatible with these proven standard methods and to perform a comparative performance analysis by determining a critical voltage threshold. Apart from the expensive and cumbersome standard methods mentioned above, the usability of the oil is carried out, thanks to the online sensor system, with the pretest using this critical voltage value. EFA-FOS measurement results of oil samples can determine the samples’ aging degree with high accuracy. The samples’ RI is determined with EFA-FOS with a sensitivity of −70 V/RIU and a linearity of 0.98 (R). A strong relationship has also been determined between the sensor output and measured BDV with a regression constant of 0.86 (R). ARTICLE HISTORY Received 30 April 2021 Accepted 31 October 2021
期刊介绍:
Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.