离散时间区间时间逻辑的分离定理

Q1 Arts and Humanities
Dimitar P. Guelev, B. Moszkowski
{"title":"离散时间区间时间逻辑的分离定理","authors":"Dimitar P. Guelev, B. Moszkowski","doi":"10.1080/11663081.2022.2050135","DOIUrl":null,"url":null,"abstract":"Gabbay's separation theorem about linear temporal logic with past has proved to be one of the most useful theoretical results in temporal logic. In this paper, we establish an analogous statement about Moszkowski's discrete-time propositional Interval Temporal Logic ( ) with two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of 's chop operator. We prove that separation holds for both with and without its loop construct chop-star.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"1949 1","pages":"28 - 54"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A separation theorem for discrete-time interval temporal logic\",\"authors\":\"Dimitar P. Guelev, B. Moszkowski\",\"doi\":\"10.1080/11663081.2022.2050135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gabbay's separation theorem about linear temporal logic with past has proved to be one of the most useful theoretical results in temporal logic. In this paper, we establish an analogous statement about Moszkowski's discrete-time propositional Interval Temporal Logic ( ) with two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of 's chop operator. We prove that separation holds for both with and without its loop construct chop-star.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"1949 1\",\"pages\":\"28 - 54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2022.2050135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2022.2050135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

Gabbay关于线性时间逻辑与过去的分离定理是时间逻辑中最有用的理论结果之一。本文建立了关于Moszkowski离散时间命题区间时间逻辑()的一个类似命题,该命题具有两组展开模态,即一元邻态和s斩算子的二元弱逆。我们证明了分离对有和没有它的循环构造都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A separation theorem for discrete-time interval temporal logic
Gabbay's separation theorem about linear temporal logic with past has proved to be one of the most useful theoretical results in temporal logic. In this paper, we establish an analogous statement about Moszkowski's discrete-time propositional Interval Temporal Logic ( ) with two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of 's chop operator. We prove that separation holds for both with and without its loop construct chop-star.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信