Guoli Ji, Qi Tang, Sheng Zhu, Junyi Zhu, Pengchao Ye, Shuting Xia, Xiaohui Wu
{"title":"stAPAminer:为空间解析转录组学研究挖掘选择性聚腺苷化的空间模式。","authors":"Guoli Ji, Qi Tang, Sheng Zhu, Junyi Zhu, Pengchao Ye, Shuting Xia, Xiaohui Wu","doi":"10.1016/j.gpb.2023.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative polyadenylation (APA) contributes to transcriptome complexity and gene expression regulation and has been implicated in various cellular processes and diseases. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of APA at the single-cell level; however, the spatial information of cells is not preserved in scRNA-seq. Alternatively, spatial transcriptomics (ST) technologies provide opportunities to decipher the spatial context of the transcriptomic landscape. Pioneering studies have revealed potential spatially variable genes and/or splice isoforms; however, the pattern of APA usage in spatial contexts remains unappreciated. In this study, we developed a toolkit called stAPAminer for mining spatial patterns of APA from spatially barcoded ST data. APA sites were identified and quantified from the ST data. In particular, an imputation model based on the k-nearest neighbors algorithm was designed to recover APA signals, and then APA genes with spatial patterns of APA usage variation were identified. By analyzing well-established ST data of the mouse olfactory bulb (MOB), we presented a detailed view of spatial APA usage across morphological layers of the MOB. We compiled a comprehensive list of genes with spatial APA dynamics and obtained several major spatial expression patterns that represent spatial APA dynamics in different morphological layers. By extending this analysis to two additional replicates of the MOB ST data, we observed that the spatial APA patterns of several genes were reproducible among replicates. stAPAminer employs the power of ST to explore the transcriptional atlas of spatial APA patterns with spatial resolution. This toolkit is available at https://github.com/BMILAB/stAPAminer and https://ngdc.cncb.ac.cn/biocode/tools/BT007320.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"601-618"},"PeriodicalIF":11.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787175/pdf/","citationCount":"0","resultStr":"{\"title\":\"stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies.\",\"authors\":\"Guoli Ji, Qi Tang, Sheng Zhu, Junyi Zhu, Pengchao Ye, Shuting Xia, Xiaohui Wu\",\"doi\":\"10.1016/j.gpb.2023.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternative polyadenylation (APA) contributes to transcriptome complexity and gene expression regulation and has been implicated in various cellular processes and diseases. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of APA at the single-cell level; however, the spatial information of cells is not preserved in scRNA-seq. Alternatively, spatial transcriptomics (ST) technologies provide opportunities to decipher the spatial context of the transcriptomic landscape. Pioneering studies have revealed potential spatially variable genes and/or splice isoforms; however, the pattern of APA usage in spatial contexts remains unappreciated. In this study, we developed a toolkit called stAPAminer for mining spatial patterns of APA from spatially barcoded ST data. APA sites were identified and quantified from the ST data. In particular, an imputation model based on the k-nearest neighbors algorithm was designed to recover APA signals, and then APA genes with spatial patterns of APA usage variation were identified. By analyzing well-established ST data of the mouse olfactory bulb (MOB), we presented a detailed view of spatial APA usage across morphological layers of the MOB. We compiled a comprehensive list of genes with spatial APA dynamics and obtained several major spatial expression patterns that represent spatial APA dynamics in different morphological layers. By extending this analysis to two additional replicates of the MOB ST data, we observed that the spatial APA patterns of several genes were reproducible among replicates. stAPAminer employs the power of ST to explore the transcriptional atlas of spatial APA patterns with spatial resolution. This toolkit is available at https://github.com/BMILAB/stAPAminer and https://ngdc.cncb.ac.cn/biocode/tools/BT007320.</p>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\" \",\"pages\":\"601-618\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gpb.2023.01.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2023.01.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies.
Alternative polyadenylation (APA) contributes to transcriptome complexity and gene expression regulation and has been implicated in various cellular processes and diseases. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of APA at the single-cell level; however, the spatial information of cells is not preserved in scRNA-seq. Alternatively, spatial transcriptomics (ST) technologies provide opportunities to decipher the spatial context of the transcriptomic landscape. Pioneering studies have revealed potential spatially variable genes and/or splice isoforms; however, the pattern of APA usage in spatial contexts remains unappreciated. In this study, we developed a toolkit called stAPAminer for mining spatial patterns of APA from spatially barcoded ST data. APA sites were identified and quantified from the ST data. In particular, an imputation model based on the k-nearest neighbors algorithm was designed to recover APA signals, and then APA genes with spatial patterns of APA usage variation were identified. By analyzing well-established ST data of the mouse olfactory bulb (MOB), we presented a detailed view of spatial APA usage across morphological layers of the MOB. We compiled a comprehensive list of genes with spatial APA dynamics and obtained several major spatial expression patterns that represent spatial APA dynamics in different morphological layers. By extending this analysis to two additional replicates of the MOB ST data, we observed that the spatial APA patterns of several genes were reproducible among replicates. stAPAminer employs the power of ST to explore the transcriptional atlas of spatial APA patterns with spatial resolution. This toolkit is available at https://github.com/BMILAB/stAPAminer and https://ngdc.cncb.ac.cn/biocode/tools/BT007320.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.