采用了显式两步对等方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
D. Conte, R. D'Ambrosio, M. Moccaldi, B. Paternoster
{"title":"采用了显式两步对等方法","authors":"D. Conte, R. D'Ambrosio, M. Moccaldi, B. Paternoster","doi":"10.1515/jnma-2017-0102","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present a general class of exponentially fitted two-step peer methods for the numerical integration of ordinary differential equations. The numerical scheme is constructed in order to exploit a-priori known information about the qualitative behaviour of the solution by adapting peer methods already known in literature. Examples of methods with 2 and 3 stages are provided. The effectiveness of this problem-oriented approach is shown through some numerical tests on well-known problems.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Adapted explicit two-step peer methods\",\"authors\":\"D. Conte, R. D'Ambrosio, M. Moccaldi, B. Paternoster\",\"doi\":\"10.1515/jnma-2017-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present a general class of exponentially fitted two-step peer methods for the numerical integration of ordinary differential equations. The numerical scheme is constructed in order to exploit a-priori known information about the qualitative behaviour of the solution by adapting peer methods already known in literature. Examples of methods with 2 and 3 stages are provided. The effectiveness of this problem-oriented approach is shown through some numerical tests on well-known problems.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2017-0102\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2017-0102","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 25

摘要

摘要本文给出了常微分方程数值积分的一类指数拟合两步对等法。数值格式的构建是为了利用先验的已知信息,通过适应文献中已知的对等方法来确定解的定性行为。给出了具有2和3阶段的方法的示例。通过对一些已知问题的数值测试,证明了这种面向问题的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapted explicit two-step peer methods
Abstract In this paper, we present a general class of exponentially fitted two-step peer methods for the numerical integration of ordinary differential equations. The numerical scheme is constructed in order to exploit a-priori known information about the qualitative behaviour of the solution by adapting peer methods already known in literature. Examples of methods with 2 and 3 stages are provided. The effectiveness of this problem-oriented approach is shown through some numerical tests on well-known problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信